(本小题满分13分)
已知函数![]()
(I)求函数
在![]()
上的最小值;
(II)对一切
恒成立,求实数a的取值范围;
(III)求证:对一切
,都有![]()
【解】(I)f ′(x)=lnx+1,当x∈(0,
),f ′(x)<0,f (x)单调递减,
当x∈(
,+∞),f ′(x)>0,f (x)单调递增. ……2分
①0<t<t+2<
,t无解;
②0<t<
<t+2,即0<t<
时,f (x)min=f (
)=-
;
③
≤t<t+2,即t≥
时,f (x)在[t,t+2]上单调递增,f (x)min=f (t)=tlnt;
所以f (x)min=
. ……5分
(II)2xlnx≥-x2+ax-3,则a≤2lnx+x+
, ……6分
设h (x)=2lnx+x+
(x>0),则h′ (x)=
,x∈(0,1),h′ (x)<0,h (x)单调递减,
x∈(1,+∞),h′ (x)>0,h (x)单调递增,所以h (x)min=h (1)=4,
因为对一切x∈(0,+∞),2f (x)≥g (x)恒成立,所以a≤h (x)min=4. ……9分
(III)问题等价于证明xlnx>
-
(x∈(0,+∞)),
由(I)可知f (x)=xlnx(x∈(0,+∞))的最小值是-
,
当且仅当x=
时取到.
设m (x)=
-
(x∈(0,+∞)),则m ′(x)=
,
易得m (x)max=m (1)=-
,当且仅当x=1时取到,
从而对一切x∈(0,+∞),都有lnx>
-
. ……13分
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数![]()
.
(1)求函数
的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数
在区间
上的图象.
(3)设0<x<
,且方程
有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为
的函数
是奇函数.
(1)求
的值;(2)判断函数
的单调性;
(3)若对任意的
,不等式恒成立
,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱
的所有棱长都为2,
为
的中点。
(Ⅰ)求证:
∥平面
;
(Ⅱ)求异面直线
与
所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知
为锐角,且
,函数
,数列{
}的首项
.
(1) 求函数
的表达式;
(2)在
中,若
A=2
,
,BC=2,求
的面积
(3) 求数列
的前
项和![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com