精英家教网 > 高中数学 > 题目详情

设等比数列

A.243                        B.                 C.                    D.81

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

经过A(2,0),以(2cosθ-2,sinθ)为方向向量的直线与经过B(-2,0),以(2+2cosθ,sinθ)为方向向量的直线相交于点M(x,y),其中θ≠kπ.
(I)求点M(x,y)的轨迹方程;
(II)设(I)中轨迹为曲线C,F1(-
3
,0),F2(
3
,0)
,若曲线C内存在动点P,使得|PF1|、|OP|、|PF2|成等比数列(O为坐标原点),求
PF1
PF2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+mx在(0,1)上是增函数
(1)求实数m的取值集合A
(2)当m取值集合A中的最小值时,定义数列{an};满足a1=3,且an>0,an+1=
-3f/(an)+9
-2,设
bn=an-1,证明:数列{bn}是等比数列,并求数列{an}的通项公式.
(3)若cn=nan,数列{cn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都模拟)已知一非零向量列{an}满足:a1=(1,1),an=(xn,yn)=
12
(xn-1-yn-1xn-1+yn-1)(n≥2)

(1)证明:{|an|}是等比数列;
(2)设θn=<a n-1,an>(n≥2),bn=2nθn-1,Sn=b1+b2+…+bn,求Sn
(3)设cn=|an|log2|an|,问数列{cn}中是否存在最小项?若存在,求出最小项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的首项为a1=2,公比为q(q为正整数),且满足3a3是8a1与a5的等差中项;等差数列{bn}满足2n2-(t+bn)n+
32
bn
=0(t∈R,n∈N*).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ) 若对任意n∈N*,有anbn+1+λanan+1≥bnan+1成立,求实数λ的取值范围;
(Ⅲ)对每个正整数k,在ak和a k+1之间插入bk个2,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tm=2cm+1的所有正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为整数的等比数列,公比q>1,且满足aa=64,a+2是a,a的等差中项。

(1)求数列的通项公式(2)设,试比较A与B的大小,并证明你的结论。

 

查看答案和解析>>

同步练习册答案