解:令g(x)=(x+1)ln(x+1)-ax,
对函数g(x)求导数:g′(x)=ln(x+1)+1-a,
令g′(x)=0,解得x=ea-1-1.
(ⅰ)当a≤1时,对所有x>0,g′(x)>0,所以g(x)在[0,+∞]上是增函数.
又g(0)=0,所以对x≥0,有g(x)≥g(0),
即当a≤1时,对于所有x≥0,都有f(x)≥ax.
(ⅱ)当a>1时,对于0<x<ea-1-1,g′(x)<0,所以g(x)在(0,ea-1-1)上是减函数,又g(0)=0,所以对0<x<ea-1-1有g(x)<g(0),
即f(x)<ax,
所以当a>1时,不是对所有的x≥0都有f(x)≥ax成立.
综上,a的取值范围是(-∞,1].
科目:高中数学 来源: 题型:
| 2 |
| ||
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 1 |
| x |
| 2e |
| x |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 1 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 3 |
| 4 |
| 15 |
| 2 |
查看答案和解析>>
科目:高中数学 来源:徐州模拟 题型:解答题
| 2 |
| ||
| 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com