精英家教网 > 高中数学 > 题目详情
已知双曲线C:
y2
a2
-
x2
b2
=1
(a>0,b>0),P为x轴上一动点,经过点P的直线y=2x+m(m≠0)与双曲线C有且只有一个交点,则双曲线C的离心率为______.
由双曲线的方程可知:渐近线方程为y=±
a
b
x

∵经过P的直线y=2x+m(m≠0)与双曲线C有且只有一个交点,∴此直线与渐近线y=
a
b
x
平行,
a
b
=2

∴∴e=
c
a
=
1+(
b
a
)2
=
5
2

故答案为
5
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知双曲线C的方程为
y2
a2
-
x2
b2
=1(a>0,b>0),离心率e=
5
2
,顶点到渐近线的距离为
2
5
5

(Ⅰ)求双曲线C的方程;
(Ⅱ)如图,P是双曲线C上一点,A,B两点在双曲线C的两条渐近线上,且分别位于第一、二象限,若
AP
PB
,λ∈[
1
3
,2]
,求△AOB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C的方程为
y2
a2
-
x2
b2
=1
(a>0,b>0),离心率e=
5
2
,顶点到渐近线的距离为
2
5
5
.求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知双曲线C:
y2
a2
-
x2
b2
=1
(a>0,b>0)的离心率e=
2
,F1、F2分别为双曲线C的上、下焦点,M为上准线与渐近线在第一象限的交点,且
MF1
MF2
=-1.
(1)求双曲线C的方程;
(2)直线l交双曲线C的渐近线l1、l2于P1、P2,交双曲线于P、Q,且
P1P
=2
PP2
,求|
PQ
|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•大连一模)已知双曲线C:
y2
a2
-
x2
b2
=1
(a>0,b>0),P为x轴上一动点,经过点P的直线y=2x+m(m≠0)与双曲线C有且只有一个交点,则双曲线C的离心率为
5
2
5
2

查看答案和解析>>

同步练习册答案