精英家教网 > 高中数学 > 题目详情

已知等比数列{an}的各项均为正数,且a5-a1=15,a4-a2=6.
(1)求数列{an}的通项公式.
(2)设cn=log2a1+log2a2+…+log2an+1,若数学公式恒成立,求实数M的最小值.

解:(1)设等比数列的公比为q,由已知有a1q4-a1=15,a1q3-a1q=6,显然q≠1,
两式相除得2q2-5q+2=0或q=2,…2分
舍去,…4分
q=2?a1=1,?an=2n-1(n∈N*)…6分
(2)由已知有…8分<2…10分
恒成立,只需2≤M,所以Mmin=2…12分
分析:(1)根据等比数列的通项公式为an=a1qn-1求出a1和q,从而得到通项公式;
(2)因为cn=log2a1+log2a2+…+log2an+1,从而可求cn,进而可求其倒数,利用裂项求和,从而可得其最小值,故可解.
点评:本题以等比数列为载体,考查等比数列的通项,考查裂项求和法的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案