精英家教网 > 高中数学 > 题目详情
已知曲线C:y=x3-3x2+2x,直线l:y=kx,且直线l与曲线C相切于点(x0,y0)(x0≠0),求直线l的方程及切点坐标.?

      

思路分析:直线l过(0,0),可用两点连线的斜率公式求出k,再由导数的几何意义建立方程求解x0即可.?

       解:∵直线l过原点,则k=(x0≠0).?

       由点(x0,y0)在曲线C上,得y0=x03-3x02+2x0.?

       ∴=x02-3x0+2.?

       ∵y′=3x2-6x+2,∴k=3x02-6x0+2.?

       又k=,∴3x02-6x0+2=x02-3x0+2.?

       整理,得2x02-3x0=0.?

       ∵x0≠0,∴x0=,此时y0=-,k=-.?

       因此直线l的方程为y=-x,切点坐标为(,-).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C:y=x3及其上一点P1(1,1),过P1作C的切线l1,l1与C的另一公共点为P2(不同于P1),过P2作C的切线l2,l2与C的另一公共点为P3(不同于P2),…,得到C的一列切线l1,l2,…,ln,…,相应的切点分别为P1,P2,…,Pn,….
(1)求Pn的坐标;
(2)设ln到ln+1的角为θn,求
limn→∞
tanθn
之值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:y=x3-3x2+2x
(1)求曲线C上斜率最小的切线方程.
(2)过原点引曲线C的切线,求切线方程及其对应的切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

17、已知曲线C:y=x3-x+2和点A(1,2),求过点A的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:y=x3-3x2,直线l:y=-2x
(1)求曲线C与直线l围成的区域的面积;
(2)求曲线y=x3-3x2(0≤x≤1)与直线l围成的图形绕x轴旋转一周所得的旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:y=x3
(1)求曲线C上横坐标为1的点处的切线的方程;
(2)第(1)小题中的切线与曲线C是否还有其他的公共点?

查看答案和解析>>

同步练习册答案