精英家教网 > 高中数学 > 题目详情

列0,1,0,-1,0,1,0,-1,…的一个通项公式是

[  ]
A.

B.

cos

C.

cos

D.

cos

答案:B
解析:

分别取n=1,2,3,4代入验证可得.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某个体经营者把开始6个月试销A,B两种商品的逐月投资金额与所获纯利润列成下表:
投资A种商品金额(万元) 1 2 3 4 5 6
获纯利润(万元) 0.65 1.39 1.85 2 1.84 1.4
投资B种商品金额(万元) 1 2 3 4 5 6
获纯利润(万元) 0.25 0.49 0.76 1 1.26 1.51
该经营者准备第7个月投入12万元经营这两种商品,但不知投入A,B两种商品各多少万元才合算.请你帮助制定一个资金投入方案,使得该经营者能获得最大纯利润,并按你的方案求出该经营者第7个月可获得的最大纯利润(结果保留两位有效数字).

查看答案和解析>>

科目:高中数学 来源:湖南省长沙市一中2010届高三第一次模拟考试数学理科试题 题型:022

给定项数为m(m∈N*,m≥3)的数列{an},其中ai∈{0,1}(i=1,2,3,…,m),这样的数列叫”0-1数列”.若存在一个正整数k(2≤km–1),使得数列{an}中某连续k项与该数列中另一个连续k项恰好按次序对应相等,则称数列{an}是k阶可重复数列”.例如数列{an}:0,1,1,0,1,1,0因为a1a2a3a4a4a5a6a7按次序对应相等,所以数列{an}是“4阶可重复数列”.

(1)已知数列{bn}:0,0,0,1,1,0,0,1,1,0,则该数列________“5阶可重复数列”(填“是”或“不是”);

(2)要使项数为m的所有”0-1数列”都为“2阶可重复数列,则m的最小值是________

查看答案和解析>>

科目:高中数学 来源:2008年高考预测卷数学科(一)新课标 题型:044

已知函数y=f(x)满足:

(1)分别写出x∈[0,1)时y=f(x)的解析式f1(x)和x∈[1,2)时y=f(x)的解析式f2(x);并猜想x∈[n,n+1),n≥-1,n∈Z时y=f(x)的解析式fn+1(x)(用x和n表示)(不必证明)

(2)当(n≥-1,n∈Z)时,y=fn+1(x)x∈[n,n+1),n≥-1,n∈Z的图象上有点列An+1(x,f(x))和点列Bn+1(n+1,f(n+1)),线段An+1Bn+2与线段Bn+1+An+2的交点Cn+1,求点Cn+1的坐标(an+1(x),bn+1(x));

(3)在前面(1)(2)的基础上,请你提出一个点列Cn+1(an+1(x),bn+1(x))的问题,并进行研究,并写下你研究的过程

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(北京卷解析版) 题型:解答题

设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合。

对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n):

记K(A)为∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   对如下数表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)设数表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因为

所以

(2)  不妨设.由题意得.又因为,所以

于是

    

所以,当,且时,取得最大值1。

(3)对于给定的正整数t,任给数表如下,

任意改变A的行次序或列次序,或把A中的每一个数换成它的相反数,所得数表

,并且,因此,不妨设

得定义知,

又因为

所以

     

     

所以,

对数表

1

1

1

-1

-1

 

综上,对于所有的的最大值为

 

查看答案和解析>>

同步练习册答案