列0,1,0,-1,0,1,0,-1,…的一个通项公式是
![]()
cos![]()
cos![]()
cos![]()
科目:高中数学 来源: 题型:
| 投资A种商品金额(万元) | 1 | 2 | 3 | 4 | 5 | 6 |
| 获纯利润(万元) | 0.65 | 1.39 | 1.85 | 2 | 1.84 | 1.4 |
| 投资B种商品金额(万元) | 1 | 2 | 3 | 4 | 5 | 6 |
| 获纯利润(万元) | 0.25 | 0.49 | 0.76 | 1 | 1.26 | 1.51 |
查看答案和解析>>
科目:高中数学 来源:湖南省长沙市一中2010届高三第一次模拟考试数学理科试题 题型:022
给定项数为m(m∈N*,m≥3)的数列{an},其中ai∈{0,1}(i=1,2,3,…,m),这样的数列叫”0-1数列”.若存在一个正整数k(2≤k≤m
–1),使得数列{an}中某连续k项与该数列中另一个连续k项恰好按次序对应相等,则称数列{an}是“k阶可重复数列”.例如数列{an}:0,1,1,0,1,1,0,因为a1,a2,a3,a4与a4,a5,a6,a7按次序对应相等,所以数列{an}是“4阶可重复数列”.(
1)已知数列{bn}:0,0,0,1,1,0,0,1,1,0,则该数列________“5阶可重复数列”(填“是”或“不是”);(
2)要使项数为m的所有”0-1数列”都为“2阶可重复数列”,则m的最小值是________.查看答案和解析>>
科目:高中数学 来源:2008年高考预测卷数学科(一)新课标 题型:044
已知函数y=f(x)满足:
;
(1)分别写出x∈[0,1)时y=f(x)的解析式f1(x)和x∈[1,2)时y=f(x)的解析式f2(x);并猜想x∈[n,n+1),n≥-1,n∈Z时y=f(x)的解析式fn+1(x)(用x和n表示)(不必证明)
(2)当
(n≥-1,n∈Z)时,y=fn+1(x)x∈[n,n+1),n≥-1,n∈Z的图象上有点列An+1(x,f(x))和点列Bn+1(n+1,f(n+1)),线段An+1Bn+2与线段Bn+1+An+2的交点Cn+1,求点Cn+1的坐标(an+1(x),bn+1(x));
(3)在前面(1)(2)的基础上,请你提出一个点列Cn+1(an+1(x),bn+1(x))的问题,并进行研究,并写下你研究的过程
查看答案和解析>>
科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(北京卷解析版) 题型:解答题
设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合。
对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n):
记K(A)为∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 对如下数表A,求K(A)的值;
|
1 |
1 |
-0.8 |
|
0.1 |
-0.3 |
-1 |
(2)设数表A∈S(2,3)形如
|
1 |
1 |
c |
|
a |
b |
-1 |
求K(A)的最大值;
(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因为
,![]()
所以![]()
(2) 不妨设
.由题意得
.又因为
,所以
,
于是
,
,
![]()
所以
,当
,且
时,
取得最大值1。
(3)对于给定的正整数t,任给数表
如下,
|
|
|
… |
|
|
|
|
… |
|
任意改变A的行次序或列次序,或把A中的每一个数换成它的相反数,所得数表
,并且
,因此,不妨设
,
且![]()
。
由
得定义知,
,![]()
![]()
又因为![]()
所以![]()
![]()
![]()
所以,![]()
对数表
:
|
1 |
1 |
… |
1 |
|
… |
|
|
|
|
… |
|
-1 |
… |
-1 |
则
且
,
综上,对于所有的
,
的最大值为![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com