精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,有一个以F1(0,-
3
)
F2(0,
3
)
为焦点、离心率为
3
2
的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x、y轴的交点分别为A、B,且向量
OM
=
OA
+
OB
.求:
(Ⅰ)点M的轨迹方程;
(Ⅱ)|
OM
|
的最小值.
(I)椭圆方程可写为:
y2
a2
+
x2
b2
=1式中a>b>0,且
a2-b2=3
3
a
=
3
2
得a2=4,b2=1,
所以曲线C的方程为:x2+
y2
4
=1(x>0,y>0).y=2
1-x2
(0<x<1)y'=-
2x
1-x2

设P(x0,y0),因P在C上,有0<x0<1,y0=2
1-
x20
,y'|x=x0=-
4x0
y0
,得切线AB的方程为:
y=-
4x0
y0
(x-x0)+y0
设A(x,0)和B(0,y),由切线方程得x=
1
x0
,y=
4
y0

OM
=
OA
+
OB
得M的坐标为(x,y),由x0,y0满足C的方程,得点M的轨迹方程为:
1
x2
+
4
y2
=1(x>1,y>2)
(Ⅱ)|
OM
|2=x2+y2,y2=
4
1-
1
x2
=4+
4
x2-1

∴|
OM
|2=x2-1+
4
x2-1
+5≥4+5=9.
且当x2-1=
4
x2-1
,即x=
3
>1时,上式取等号.
故|
OM
|的最小值为3.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x-2y=0,则它的离心率为(  )
A、
5
B、
5
2
C、
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l的参数方程为
x=2t-1 
y=4-2t .
(参数t∈R),以直角坐标原点为极点,x轴的正半轴为极轴建立相应的极坐标系.在此极坐标系中,若圆C的极坐标方程为ρ=4cosθ,则圆心C到直线l的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程) 在平面直角坐标系xOy中,圆C的参数方程为
x=2cosθ
y=2sinθ+2
 (参数θ∈[0,2π)),若以原点为极点,射线ox为极轴建立极坐标系,则圆C的圆心的极坐标为
 
,圆C的极坐标方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东)在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A、B两点,则弦AB的长等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(Ⅰ)若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,求sin(α+β)的值;
(Ⅱ) 若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

同步练习册答案