精英家教网 > 高中数学 > 题目详情
双曲线
x2
5
-
y2
9
=1
的虚轴长等于
6
6
分析:由双曲线的标准方程
x2
5
-
y2
9
=1
可得,a=
5
,b=3,从而得到虚轴的长2b.
解答:解:由双曲线的标准方程
x2
5
-
y2
9
=1
可得,a=
5
,b=3,故虚轴的长为:2 b=6,
故答案为:6.
点评:本题主要考查双曲线的标准方程,以及双曲线的简单性质的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列五个命题,其中真命题的序号是
 
(写出所有真命题的序号).
(1)已知C:
x2
2-m
+
y2
m2-4
=1
(m∈R),当m<-2时C表示椭圆.
(2)在椭圆
x2
45
+
y2
20
=1上有一点P,F1、F2是椭圆的左,右焦点,△F1PF2为直角三角形则这样的点P有8个.
(3)曲线
x2
10-m
+
y2
6-m
=1(m<6)
与曲线
x2
5-m
+
y2
9-m
=1(5<m<9)
的焦距相同.
(4)渐近线方程为y=±
b
a
x(a>0,b>0)
的双曲线的标准方程一定是
x2
a2
-
y2
b2
=1

(5)抛物线y=ax2的焦点坐标为(0,
1
4a
)

查看答案和解析>>

科目:高中数学 来源: 题型:

中心在原点,有一条渐近线方程是2x+3y=0,对称轴为坐标轴,且过点(2,2)的双曲线方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列五个命题:
①“若x+y=0,则x,y互为相反数”的逆命题.
②在平面内,F1、F2是定点,丨F1F2丨=6,动点M满足丨MF1丨-丨MF2丨=4,则点M的轨迹是双曲线.
③“在△ABC中,“∠B=60°”是“∠A,∠B,∠C三个角成等差数列”的充要条件.
④“若-3<m<5,则方程
x2
5-m
+
y2
m+3
=1是椭圆”.
⑤已知向量
a
b
c
是空间的一个基底,则向量
a
+
b
a
-
b
c
也是空间的一个基底.
⑥椭圆
x2
25
+
y2
9
=1上一点P到一个焦点的距离为5,则P到另一个焦点的距离为5.
其中真命题的序号是
①③⑤⑥
①③⑤⑥

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线
x2
5
-
y2
9
=1
的虚轴长等于______.

查看答案和解析>>

同步练习册答案