精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=cos(cosx),下列结论错误的是(  )
A.f(x)是奇函数B.π为f(x)的最小正周期
C.f(x)的对称轴方程为x=kπ(k∈Z)D.f(x)的值域为[cos1,1]

分析 利用奇偶函数的定义以及余弦函数的性质解答.

解答 解:f(x)=cos(cosx)定义域为R,f(-x)=cos(cos(-x))=f(x)=cos(cosx),所以函数为偶函数;故A错误;
f(x+π)=cos(cos(x+π))=f(x)=cos(cosx),故B正确;
因为y=cosx的对称轴方程为x=kπ,并且f(kπ)=cos(cos(kπ))=cos1,是f(x)的最大值;所以f(x)的对称轴方程为x=kπ(k∈Z);故C正确;
因为cosx∈[-1,1],并且cosx 在[-1,0]递增,[0,1]递减,所以f(x)的最大值为cos0=1,最小值为cos1;所以f(x)的值域为[cos1,1];故D正确;
故选:A.

点评 本题考查了三角函数的性质的运用;熟练掌握余弦函数的性质是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.关于x的不等式x2+ax-2<0在区间[1,4]上恒成立,则实数a的取值范围是(  )
A.$(-∞,-\frac{7}{2})$B.(-∞,1)C.$(-\frac{7}{2},+∞)$D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=(1+x)2-2ln(1+x).
(Ⅰ)对任意x0∈[0,1],不等式f(x0)-m≤0恒成立,求实数m的最小值;
(Ⅱ)若存在x0∈[0,1],使不等式f(x0)-m≤0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为(  )
A.$\stackrel{∧}{y}$=1.23x+5B.$\stackrel{∧}{y}$=1.23x+4C.$\stackrel{∧}{y}$=0.08x+1.23D.$\stackrel{∧}{y}$=1.23x+0.08

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列命题的正确的是(  )
A.若直线 l上有无数个点不在平面 α内,则  l∥α
B.若直线 l与平面α平行,则l与平面α内的任意一条直线都平行
C.如果两条平行直线中的一条与一个平面α平行,那么另一条也与这个平面平行.
D.若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知p:方程${x^2}+2\sqrt{2}x+m=0$有两个不相等的实数根;q:不等式4x2+4(m-2)x+1>0的解集为R.若“p∨q”为真,“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设幂函数f(x)=(m+3)xm,则f(2)-f(-2)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$\frac{{x}^{2}}{2}$+y2=1的左右焦点分别为F1,F2,直线l过椭圆的右焦点F2与椭圆交于A,B 两点,
(Ⅰ)当直线l的斜率为1,点P为椭圆上的动点,满足使得△ABP的面积为$\frac{{2\sqrt{5}-2}}{3}$的点P有几个?并说明理由.
(Ⅱ)△ABF1的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.集合A={直线l|直线l的方程是(m+3)x+(m-2)y-1-2m=0},集合B={直线l|直线l是x2+y2=2的切线},则A∩B=(  )
A.B.{(1,1)}C.{(x,y)|x+y-2=0}D.{(x,y)|3x-2y-1=0}

查看答案和解析>>

同步练习册答案