精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
2
ax2+lnx

(1)当a=-
1
4
时,求函数f(x)在[1,e]上的最大值、最小值;
(2)求f(x)的单调区间.
(1)∵f(x)=
1
2
ax2+lnx

当a=-
1
4
时,f(x)=-
1
8
x2+lnx

f(x)=-
x
4
+
1
x
=
4-x2
4x
=
-(x+2)(x-2)
4x

令f′(x)=0可得x1=2,x2=-2
当x∈[1,2],f′(x)>0,当x∈[2,e]时,f′(x)<0
∴函数在区间[1,e]上,有x1=2时,f(x)max=-
1
2
+ln2
,f(x)min=min{f(1),f(e)}
而f(1)=-
1
8
,f(e)=-
1
8
e2+1>f(1)=-
1
8

∴f(x)min=-
1
8

(2)∵f(x)=
1
2
ax2+lnx

f(x)=ax+
1
x
=
ax2+1
x

①当a≥0时,由f′(x)>0可得,x>0,由f′(x)<0可得x<0
又x>0
∴f(x)在(0,+∞)单调递增
②当a<0时,f(x)=
ax2+1
x
=
a(x-
-
1
a
)(x+
-
1
a
)
x

由f′(x)>0可得,x∈(-∞,-
-
1
a
)∪(0,
-
1
a
)

由f′(x)<0可得,x∈(-
-
1
a
,0)∪ (
-
1
a
,+∞)
,又x>0
∴f(x)的单调递增区间(0,
-
1
a
),减区间(
-
1
a
,+∞
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案