精英家教网 > 高中数学 > 题目详情
若关于x的三次函数f(x)=x3-ax2-a2x+1在R上不单调的充分不必要条件是
 
(填一个你认为正确的结论).
分析:根据导数和函数单调性之间的关系求出函数不单调的等价条件,利用充分条件和必要条件的定义即可得到结论.
解答:解:函数的导数f'(x)=3x2-2ax-a2
要使三次函数f(x)=x3-ax2-a2x+1在R上不单调,
则函数f(x)存在极值,
即f'(x)=3x2-2ax-a2,满足△>0,
∴由△=4a2-4×3×(-a2)=16a2>0,
∴a≠0,
∴满足条件的一个充分不必要条件可以是a=1.
故答案:a=1.
点评:本题主要考查充分条件和必要条件的应用,利用函数单调性和导数之间的关系求出a的取值范围是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).定义:(1)f(x)的导数f′(x)(也叫f(x)一阶导数)的导数,f″(x)为f(x)的二阶导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0) )为函数y=f(x)的“拐点”;定义:(2)设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)恒成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.
(1)己知f(x)=x3-3x2+2x+2,求函数f(x)的“拐点”A的坐标;
(2)检验(1)中的函数f(x)的图象是否关于“拐点”A对称;
(3)对于任意的三次函数f(x)=ax3+bx2+cx+d(a≠0)写出一个有关“拐点”的结论(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).定义:(1)f(x)的导数f′(x)(也叫f(x)一阶导数)的导数,f″(x)为f(x)的二阶导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0) )为函数y=f(x)的“拐点”;定义:(2)设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)恒成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.
(1)己知f(x)=x3-3x2+2x+2,求函数f(x)的“拐点”A的坐标;
(2)检验(1)中的函数f(x)的图象是否关于“拐点”A对称;
(3)对于任意的三次函数f(x)=ax3+bx2+cx+d(a≠0)写出一个有关“拐点”的结论(不必证明).

查看答案和解析>>

科目:高中数学 来源:《第1章 导数及其应用》2010年单元测试卷(3)(解析版) 题型:解答题

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).定义:(1)f(x)的导数f′(x)(也叫f(x)一阶导数)的导数,f″(x)为f(x)的二阶导数,若方程f″(x)=0有实数解x,则称点(x,f(x) )为函数y=f(x)的“拐点”;定义:(2)设x为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x+x)+f(x-x)=2f(x)恒成立,则函数y=f(x)的图象关于点(x,f(x))对称.
(1)己知f(x)=x3-3x2+2x+2,求函数f(x)的“拐点”A的坐标;
(2)检验(1)中的函数f(x)的图象是否关于“拐点”A对称;
(3)对于任意的三次函数f(x)=ax3+bx2+cx+d(a≠0)写出一个有关“拐点”的结论(不必证明).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).定义:(1)f(x)的导数f′(x)(也叫f(x)一阶导数)的导数,f″(x)为f(x)的二阶导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0) )为函数y=f(x)的“拐点”;定义:(2)设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)恒成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.
(1)己知f(x)=x3-3x2+2x+2,求函数f(x)的“拐点”A的坐标;
(2)检验(1)中的函数f(x)的图象是否关于“拐点”A对称;
(3)对于任意的三次函数f(x)=ax3+bx2+cx+d(a≠0)写出一个有关“拐点”的结论(不必证明).

查看答案和解析>>

同步练习册答案