精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对应的边分别为a,b,c,sinC+sin(A-B)=3sin2B.若C=
π
3
,则
a
b
=(  )
分析:根据三角形内角和定理与诱导公式,可得sinC=sin(A+B)=sinAcosB+cosAsinB,代入题中等式并利用三角恒等变换化简,整理得cosB(sinA-3sinB)=0,可得cosB=0或sinA=3sinB.再由正弦定理与直角三角形中三角函数的定义加以计算,可得
a
b
的值.
解答:解:∵A+B=π-C,
∴sinC=sin(π-C)=sin(A+B)=sinAcosB+cosAsinB,
又∵sin(A-B)=sinAcosB-cosAsinB,
∴sinC+sin(A-B)=3sin2B,即(sinAcosB+cosAsinB)+(sinAcosB-cosAsinB)=6sinBcosB,
化简得2sinAcosB=6sinBcosB,即cosB(sinA-3sinB)=0
解之得cosB=0或sinA=3sinB.
①若cosB=0,结合B为三角形的内角,可得B=
π
2

C=
π
3
,∴A=
π
2
-C
=
π
6

因此sinA=sin
π
6
=
1
2
,由三角函数的定义得sinA=
a
b
=
1
2

②若sinA=3sinB,由正弦定理得a=3b,所以
a
b
=3.
综上所述,
a
b
的值为
1
2
或3.
故选:C
点评:本题给出三角形角的三角函数关系式,求边之间的比值.着重考查了三角形内角和定理与诱导公式、三角恒等变换、三角函数的定义和正余弦定理等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案