精英家教网 > 高中数学 > 题目详情
6.如题图,圆O的弦AB,CD相交于点E,过点A作圆O的切线与DC的延长线交于点P,若PA=6,AE=9,PC=3,CE:ED=2:1,则BE=2.

分析 利用切割线定理计算CE,利用相交弦定理求出BE即可.

解答 解:设CE=2x,ED=x,则
∵过点A作圆O的切线与DC的延长线交于点P,
∴由切割线定理可得PA2=PC•PD,即36=3×(3+3x),
∵x=3,
由相交弦定理可得9BE=CE•ED,即9BE=6×3,
∴BE=2.
故答案为:2.

点评 本题考查切割线定理、相交弦定理,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某市A、B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.
(Ⅰ)求A中学至少有1名学生入选代表队的概率;
(Ⅱ)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是($\sqrt{6}$-$\sqrt{2}$,$\sqrt{6}$+$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{x^2}{2}+{y^2}=1$上两个不同的点A,B关于直线y=mx+$\frac{1}{2}$对称.
(1)求实数m的取值范围;
(2)求△AOB面积的最大值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若tanα=2tan$\frac{π}{5}$,则$\frac{{cos(α-\frac{3π}{10})}}{{sin(α-\frac{π}{5})}}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如题图,三棱锥P-ABC中,PC⊥平面ABC,PC=3,∠ACB=$\frac{π}{2}$.D,E分别为线段AB,BC上的点,且CD=DE=$\sqrt{2}$,CE=2EB=2.
(Ⅰ)证明:DE⊥平面PCD
(Ⅱ)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{1}{3}+2π$B.$\frac{13π}{6}$C.$\frac{7π}{3}$D.$\frac{5π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设向量$\overrightarrow{a}$=(2,4)与向量$\overrightarrow{b}$=(x,6)共线,则实数x=(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3,
(Ⅰ)求抛物线E的方程;
(Ⅱ)已知点G(-1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.

查看答案和解析>>

同步练习册答案