精英家教网 > 高中数学 > 题目详情

函数数学公式(a为常数)是偶函数,且在(0,+∞)上是减函数,则整数a的值是________.

1或3
分析:由题意知,a2-4a-5 是偶数,再由单调性得a2-4a-5=(a-5)(a+1)<0,结合这2个条件可以得到整数a的值.
解答:∵函数(a为常数)是偶函数,∴a2-4a-5 是偶数.
又在(0,+∞)上是减函数,∴a2-4a-5=(a-5)(a+1)<0,∴-1<a<5,
综上,整数a=1或a=3,
故答案为:1或3.
点评:本题考查函数奇偶性、单调性及幂函数的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标平面内有一个边长为a、中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为(  )
A、偶函数B、奇函数C、不是奇函数,也不是偶函数D、奇偶性与k有关

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域D关于原点对称,0∈D,且存在常数a>0,使f(a)=1,又f(x1-x2)=
f(x1)-f(x2)1+f(x1)f(x2)

(1)写出f(x)的一个函数解析式,并说明其符合题设条件;
(2)判断并证明函数f(x)的奇偶性;
(3)若存在正常数T,使得等式f(x)=f(x+T)或者f(x)=f(x-T)对于x∈D都成立,则都称f(x)是周期函数,T为周期;试问f(x)是不是周期函数?若是,则求出它的一个周期T;若不是,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河北模拟)如图,直角坐标平面内的正六边形ABCDEF,中心在原点边长为a,AB边平行x轴,直线l:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则关于函数S=f(t)的奇偶性的判断正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区一模)设f(x)=2cos2x+
3
sin2x
g(x)=
1
2
f(x+
12
)+ax+b
,其中a,b为非零实常数.
(1)若f(x)=1-
3
x∈[-
π
3
π
3
]
,求x;
(2)若x∈R,试讨论函数g(x)的奇偶性,并证明你的结论;
(3)已知:对于任意x1,x2∈R,恒有sin2x1-sin2x2≤2(x1-x2),当且仅当x1=x2时,等号成立.若a≥2,求证:函数g(x)在R上是递增函数.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山西省高三上学期期中考试理科数学试卷(解析版) 题型:选择题

如图,直角坐标平面内的正六边形ABCDEF,中心在原点,边长为a,AB平行于x轴,直线(k为常数)与正六边形交于M、N两点,记的面积为S,则关于函数的奇偶性的判断正确的是 (    )

A.一定是奇函数

B.—定是偶函数

C.既不是奇函数,也不是偶函数

D.奇偶性与k有关

 

查看答案和解析>>

同步练习册答案