精英家教网 > 高中数学 > 题目详情

已知(其中ω>0).

(1)求函数f(x)的值域;

(2)若f(x)的周期为π,求ω的值并写出该函数在[0,π]上的单调区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知常数a>0,向量
c
=(0,a),
i
=(1,0),经过原点O以
c
i
,为方向向量的直线与经过定点A(0,a)以i-2λc为方向向量的直线相交于点P,其中λ∈R.试问:是否存在两个定点E、F,使得|PE|+|PF|为定值.若存在,求出E、F的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知定义在区间[0,1]上的函数y=f(x)的图象如图所示,对于满足0<x1<x2<1的任意x1、x2,给出下列结论:
①f(x2)-f(x1)>x2-x1
②x2f(x1)>x1f(x2);
f(x1)+f(x2)
2
<f (
x1+x2
2
).
其中正确结论的序号是
 
(把所有正确结论的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知点A(0,-3),动点P满足|PA|=2|PO|,其中O为坐标原点.
(Ⅰ)求动点P的轨迹方程.
(Ⅱ)记(Ⅰ)中所得的曲线为C.过原点O作两条直线l1:y=k1x,l2:y=k2x分别交曲线C于点E(x1,y1)、F(x2,y2)、G(x3,y3)、H(x4,y4)(其中y2>0,y4>0).求证:
k1x1x2
x1+x2
=
k2x3x4
x3+x4

(III)对于(Ⅱ)中的E、F、G、H,设EH交x轴于点Q,GF交x轴于点R.求证:|OQ|=|OR|.(证明过程不考虑EH或GF垂直于x轴的情形)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为(0,+∞)的函数f(x)满足:对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;当x∈(1,2]时,f(x)=2-x.给出如下结论:
①对任意m∈Z,有f(2m)=0;
②函数f(x)的值域为[0,+∞);
③存在n∈Z,使得f(2n+1)=9;
④“若k∈Z,若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”
其中所有正确结论的序号是
①②④
①②④

查看答案和解析>>

科目:高中数学 来源:河南省开封市2009届高三第一次质量检测(理) 题型:解答题

 

已知其中a>0,b>0.

(Ⅰ)求使在[0,+∞)上是减函数的充要条件;

(Ⅱ)求在[0,+∞)上的最大值.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案