精英家教网 > 高中数学 > 题目详情

设定义域为R的函数f(x)=则关于x的方程f2(x)+bf(x)+c=0有7个不同实数解的充要条件是

[  ]
A.

b<0且c>0

B.

b>0且c<0

C.

b<0且c=0

D.

b≥0且c=0

答案:C
解析:

  本题可通过数形结合的方法解决.先利用函数图像的变换作出f(x)的图像,如图:

  注意f(x)=0有三个根,x1=0,x2=1,x3=2,且有f(x)≥0,令f(x)=t≥0,则方程为t2+bt+c=0有实数解(t≥0)需满足t1+t2=-b≥0,即b≤0.

  t1·t2=c≥0,排除B、D(因B项:c<0,D项b≥0).对于A,不妨令b=-3,c=2,则方程为t2-3t+2=0,解之,得t1=1,t2=2,即f(x)=1或f(x)=2,由图知有8个根,排除A,故选C.

  实际上当b<0,且c=0时,f2(x)+bf(x)=0.

  f(x)=0或f(x)=-b>0,由f(x)=-b>0,结合图像,此时有4个根,f(x)=0有根为0,1,2计7个.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若关于x的方程f2(x)-(2m+1)f(x)+m2=0有7个不同的实数根,则实数m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若关于x的方程f2(x)-(2m+1)f(x)+m2=0有5个不同的实数解,则m=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
-2x+a2x+1+b
(a,b为实数)若f(x)是奇函数.
(1)求a与b的值;
(2)判断函数f(x)的单调性,并证明;
(3)证明对任何实数x、c都有f(x)<c2-3c+3成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
|lg|x-1||,x≠1
0,          x=1
,则关于x的方程f2(x)+bf(x)+c=0有7个不同实数解的充要条件是 (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
4
|x-1
(x≠1)
2
 (x=1)
,若关于x的方程f2(x)+bf(x)+c=0有三个不同的实数解x1、x2、x3,则x12+x22|x32等于(  )

查看答案和解析>>

同步练习册答案