精英家教网 > 高中数学 > 题目详情
已知△ABC的三边长都是有理数.
(1)求证cosA是有理数;
(2)求证:对任意正整数n,cosnA是有理数.
(1)证明:设三边长分别为a,b,c,cosA=
b2+c2-a2
2bc

∵a,b,c是有理数,b2+c2-a2是有理数,分母2bc为正有理数,又有理数集对于除法的具有封闭性,
b2+c2-a2
2bc
必为有理数,
∴cosA是有理数.
(2)①当n=1时,显然cosA是有理数;
当n=2时,∵cos2A=2cos2A-1,因为cosA是有理数,∴cos2A也是有理数;
②假设当n≤k(k≥2)时,结论成立,即coskA、cos(k-1)A均是有理数.
当n=k+1时,cos(k+1)A=coskAcosA-sinkAsinA,cos(k+1)A=coskAcosA-
1
2
[cos(kA-A)-cos(kA+A)]
cos(k+1)A=coskAcosA-
1
2
cos(k-1)A+
1
2
cos(k+1)A

解得:cos(k+1)A=2coskAcosA-cos(k-1)A
∵cosA,coskA,cos(k-1)A均是有理数,∴2coskAcosA-cos(k-1)A是有理数,
∴cosA,coskA,cos(k-1)A均是有理数.
即当n=k+1时,结论成立.
综上所述,对于任意正整数n,cosnA是有理数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三边长分别为a,b,c,其面积为S,则△ABC的内切圆的半径r=
2Sa+b+c
.这是一道平面几何题,请用类比推理方法,猜测对空间四面体ABCD存在什么类似结论?
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长a,b,c满足b+2c≤3a,c+2a≤3b,则
ba
的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长为a、b、c,满足直线ax+by+c=0与圆x2+y2=1相离,则△ABC是(  )
A、锐角三角形B、直角三角形C、钝角三角形D、以上情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长为三个连续的正整数,且最大角为钝角,则最长边长为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长AC=3,BC=4,AB=5,P为AB边上任意一点,则
CP
•(
BA
-
BC
)
的最大值为
 

查看答案和解析>>

同步练习册答案