精英家教网 > 高中数学 > 题目详情
20.在△ABC中,若lna-lncosB=lnb-lncosA,其中角A,B的对边分别为a,b,则△ABC的形状为(  )
A.等腰三角形B.直角三角形
C.等边三角形D.等腰或直角三角形

分析 由对数的运算性质化简,利用正弦定理化简acosA=bcosB,通过两角差的正弦函数,求出A与B的关系,得到三角形的形状.

解答 解:若lna-lncosB=lnb-lncosA,
可得:ln$\frac{a}{cosB}$=ln$\frac{b}{cosA}$,
既有:acosA=bcosB,
所以由正弦定理可得:sinAcosA=sinBcosB,所以2A=2B或2A=π-2B,
所以A=B或A+B=90°.
所以三角形是等腰三角形或直角三角形.
故选:D.

点评 本题是基础题,考查正弦定理在三角形中的应用,三角形的形状的判断,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{a}{2}$x2-lnx+x+1,g(x)=aex+$\frac{a}{x}$+ax-2a-1,其中a∈R
(1)若a=1,其函数g(x)在[1,3]的值域;
(2)若对任意的x∈(0,+∞),g(x)≥f′(x)恒成立,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知命题P:对任意实数x都有ax2+ax+1>0恒成立;Q:关于x的方程x2-x+a=0有实数根;如果¬p∨Q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若数列{an}中,a1=1,且满足an+1=2an+1,则a7=127.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.$sin\frac{7π}{12}$的值为(  )
A.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$B.-$\frac{\sqrt{6}+\sqrt{2}}{4}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.-$\frac{\sqrt{6}-\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.化简$\frac{1}{{cos{{20}°}}}-\frac{{\sqrt{3}}}{{sin{{20}°}}}$=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和${S_n}=\frac{{{n^2}+n}}{2}$,数列{bn}的通项为bn=f(n),且f(n)满足:①$f(1)=\frac{1}{2}$;②对任意正整数m,n都有f(m+n)=f(m)f(n)成立.
(1)求an与bn
(2)设数列{anbn}的前n项和为Tn,求证:$\frac{1}{2}≤{T_n}<2$(n∈N*);
(3)数列{bn}中是否存在三项,使得这三项按原有的顺序构成等差数列,若存在,求出这三项,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某学校要从5名男生和2名女生中选出3人作为志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ等于(  )
A.$\frac{4}{7}$B.$\frac{5}{7}$C.$\frac{6}{7}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数$\overrightarrow a=(\frac{{\sqrt{3}}}{2},\frac{1}{2}),\overrightarrow b=(cos2ωx,-sin2ωx)$,令f(x)=$\overrightarrow a•\overrightarrow b$,且y=f(x)的图象的一个对称中心到最近的对称轴的距离为$\frac{π}{4}$.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)在区间[π,$\frac{3π}{2}$]上的最大值和最小值.

查看答案和解析>>

同步练习册答案