精英家教网 > 高中数学 > 题目详情

f(n)=1+(n∈N),那么n=1时,f(n)=________

练习册系列答案
相关习题

科目:高中数学 来源:全优设计选修数学-2-2苏教版 苏教版 题型:013

若f(n)=+…+(n∈N+),则n=1时,f(n)是

[  ]

A.1

B.13

C.

D.非以上答案

查看答案和解析>>

科目:高中数学 来源:2011届湖北省天门市高三天5月模拟理科数学试题 题型:解答题

已知数列{an},且x=是函数f(x)=an-1x3-3[(t+1)an-an+1] x+1(n≥2)的一个极值点.数列{an}中a1=t,a2=t2(t>0且t≠1) .
(1)求数列{an}的通项公式;
(2)记bn=2(1-),当t=2时,数列{bn}的前n项和为Sn,求使Sn>2010的n的最小值;
(3)若cn,证明:( n∈N).

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省天门市高三天5月模拟理科数学试题 题型:解答题

已知数列{an},且x=是函数f(x)=an-1x3-3[(t+1)an-an+1] x+1(n≥2)的一个极值点.数列{an}中a1=t,a2=t2(t>0且t≠1) .

(1)求数列{an}的通项公式;

(2)记bn=2(1-),当t=2时,数列{bn}的前n项和为Sn,求使Sn>2010的n的最小值;

(3)若cn,证明:( n∈N).

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)

    已知数列{an},且x是函数f(x)=an-1x3-3[(t+1)anan+1] x+1(n≥2)的一个极值点.数列{an}中a1ta2t2(t>0且t≠1) .

(1)求数列{an}的通项公式;

(2)记bn=2(1-),当t=2时,数列{bn}的前n项和为Sn,求使Sn>2010的n的最小值;

(3)若cn,证明:( n∈N).

查看答案和解析>>

同步练习册答案