精英家教网 > 高中数学 > 题目详情

设全集为R,集合A={x|-1≤x<3},B={x||x|≤2}.
(1)求:A∪B,A∩B,CR(A∩B);
(2)若集合C={x|2x-a>0},满足B∪C=C,求实数a的取值范围.

解:(1)∵全集为R,集合A={x|-1≤x<3},
B={x||x|≤2}={x|-2≤x≤2},
∴A∪B={x|-2≤x<3},
A∩B={x|-1≤x≤2},
CR(A∩B)={x|x<-1,或x>2}.
(2)∵C={x|2x-a>0}={x|x>,B∪C=C,
∴B⊆C,

解得a≤-4.
故实数a的取值范围(-∞,-4].
分析:(1)由全集为R,集合A={x|-1≤x<3},B={x||x|≤2}={x|-2≤x≤2},能够求出A∪B,A∩B,CR(A∩B).
(2)由C={x|2x-a>0}={x|x>,B∪C=C,知B⊆C,故,由此能求出实数a的取值范围.
点评:本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设全集为R,集合A={x|-1<x<1},B={x|x≥0},则?R(A∪B)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集为R,集合A={x|y=
1-x
},B={y|y=2-x,x∈R}
,则图中阴影部分表示的集合是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设全集为R,集合A={x|3≤x<7},集合B={x|2<x<8},求(CRA)∩B.
(2)已知集合A={x|x2-x-2=0},B={x|ax-1=0},若A∪B=A,求实数a的值组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集为R,集合A={x|
2
x-1
≥1
},B={x|x2>4},则(CRB)∩A=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集为R,集合A={x|x2+3x-4>0,x∈R},B={x|x2-x-6<0,x∈R}.
求(1)A∩B;(2)CR(A∩B);(3)A∪CRB.

查看答案和解析>>

同步练习册答案