精英家教网 > 高中数学 > 题目详情
函数y=
x
2
-2sinx
的图象大致是(  )
A、精英家教网
B、精英家教网
C、精英家教网
D、精英家教网
分析:根据函数y=
x
2
-2sinx
的解析式,我们根据定义在R上的奇函数图象必要原点可以排除A,再求出其导函数,根据函数的单调区间呈周期性变化,分析四个答案,即可找到满足条件的结论.
解答:解:当x=0时,y=0-2sin0=0
故函数图象过原点,
可排除A
又∵y'=
1
2
-2cosx

故函数的单调区间呈周期性变化
分析四个答案,只有C满足要求
故选C
点评:本题考查的知识点是函数的图象,在分析非基本函数图象的形状时,特殊点、单调性、奇偶性是我们经常用的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列几个命题:
①函数y=
x2-1
+
1-x2
是偶函数,但不是奇函数;
②“
a>0
△=b2-4ax≤0
”是“一元二次不等式ax2+bx+c≥0的解集为R”的充要条件;
③设函数y=f(x)定义域为R,则函数y=f(1-x)与y=f(x-1)的图象关于y轴对称;
④若函数y=Acos(ωx+φ)(A≠0)为奇函数,则φ=
π
2
+kπ(k∈Z);⑤已知x∈(0,π),则y=sinx+
2
sinx
的最小值为2
2

其中正确的有
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中错误的命题有(  )个.
(1)将函数y=sin(2x+
π
3
)
的图象向右平移
π
3
个单位,得到函数y=sin2x的图象;
(2)函数y=sin2x+cos2x在x∈[0,
π
2
]
上的单调递增区间是[0,
π
8
]

(3)设A、B、C∈(0,
π
2
)
且sinA-sinC=sinB,cosA+cosC=cosB,则B-A等于-
π
3

(4)方程sin2x+2sinx+a=0有解,则a的取值范围是[-3,1].
(5)在同一坐标系中,函数y=sinx与函数y=
x
2
的图象有三个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下命题
(1)x∈(0,
π
2
)
时,函数y=sinx+
2
sinx
的最小值为2
2

(2)若f(x)是奇函数,则f(x-1)的图象关于A(1,0)对称;
(3)“数列{an}为等比数列”是“数列{anan+1}为等比数列的充分不必要条件;
(4)若函数f(x)=log3(-x2+2mx-m2+36)在区间[-3,2)上是减函数,则m≤-3;
其中正确命题的序号是
(2)(3)
(2)(3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出以下命题
(1)x∈(0,
π
2
)
时,函数y=sinx+
2
sinx
的最小值为2
2

(2)若f(x)是奇函数,则f(x-1)的图象关于A(1,0)对称;
(3)“数列{an}为等比数列”是“数列{anan+1}为等比数列的充分不必要条件;
(4)若函数f(x)=log3(-x2+2mx-m2+36)在区间[-3,2)上是减函数,则m≤-3;
其中正确命题的序号是______.

查看答案和解析>>

同步练习册答案