精英家教网 > 高中数学 > 题目详情

设f(n)=(数学公式n+(数学公式n(n∈Z),则集合{f(n)}中元素的个数为 ________.

三个
分析:由复数的运算我们易将f(n)=(n+(n(n∈Z)进行化简,然后利用复数单位n次方的周期性,我们易得到结论.
解答:∵f(n)=(n+(n
=in+(-i)n
∴f(0)=2,f(1)=0,f(2)=-2,
f(3n)=0,f(3n+1)=0,f(3n+2)=-2,
∴集合中共有三个元素.
故答案为:三个
点评:本题考查的知识点是复数的运算,及元素及集合关系的判断,其中利用复数的运算性质及复数单位n次方的周期性,判断出函数的值域是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(n)=2n+1(n∈N),P={1,2,3,4,5},Q={3,4,5,6,7},记
?
P
={n∈N|f(n)∈P},
?
Q
={n∈N|f(n)∈Q},则(
?
P
∩CN
?
Q
)∪(
?
Q
CN
?
P
)=(  )
A、{0,3}
B、{1,2}
C、{3,4,5}
D、{1,2,6,7}

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(n,p)=C2np(n,p∈N,p≤2n).数列{a(n,p)}满足a(1,p)+a(2,p)+…+a(n,p)=f(n,p).
(1)求证:{a(n,2)}是等差数列;
(2)求证:f(n,1)+f(n,2)+…+f(n,n)=22n-1+
12
C2nn-1;
(3)设函数H(x)=f(n,1)x+f(n,2)x2+…+f(n,2n)x2n,试比较H(x)-H(a)与2n(1+a)2n-1(x-a)的大小.

查看答案和解析>>

科目:高中数学 来源:浙江 题型:单选题

设f(n)=2n+1(n∈N),P={1,2,3,4,5},Q={3,4,5,6,7},记
?
P
={n∈N|f(n)∈P},
?
Q
={n∈N|f(n)∈Q},则(
?
P
∩CN
?
Q
)∪(
?
Q
CN
?
P
)=(  )
A.{0,3}B.{1,2}C.(3,4,5}D.{1,2,6,7}

查看答案和解析>>

科目:高中数学 来源:2006-2007学年江苏省南京市金陵中学高三数学综合试卷(解析版) 题型:解答题

设f(n,p)=C2np(n,p∈N,p≤2n).数列{a(n,p)}满足a(1,p)+a(2,p)+…+a(n,p)=f(n,p).
(1)求证:{a(n,2)}是等差数列;
(2)求证:f(n,1)+f(n,2)+…+f(n,n)=22n-1+C2nn-1;
(3)设函数H(x)=f(n,1)x+f(n,2)x2+…+f(n,2n)x2n,试比较H(x)-H(a)与2n(1+a)2n-1(x-a)的大小.

查看答案和解析>>

科目:高中数学 来源:2007年江苏省南京市金陵中学高考数学三模试卷(解析版) 题型:解答题

设f(n,p)=C2np(n,p∈N,p≤2n).数列{a(n,p)}满足a(1,p)+a(2,p)+…+a(n,p)=f(n,p).
(1)求证:{a(n,2)}是等差数列;
(2)求证:f(n,1)+f(n,2)+…+f(n,n)=22n-1+C2nn-1;
(3)设函数H(x)=f(n,1)x+f(n,2)x2+…+f(n,2n)x2n,试比较H(x)-H(a)与2n(1+a)2n-1(x-a)的大小.

查看答案和解析>>

同步练习册答案