精英家教网 > 高中数学 > 题目详情
设f(x)=ex(ax2+x+1).
(I)若a>0,讨论f(x)的单调性;
(Ⅱ)x=1时,f(x)有极值,证明:当θ∈[0,
π
2
]时,|f(cosθ)-f(sinθ)|<2.
(I)f(x)=ex(ax2+x+1)+ex(2ax+1)=ex[ax2+(2a+1)x+2]=aex(x+
1
a
)(x+2)

(i)当a=
1
2
时,f(x)=
1
2
ex(x+2)2≥0
恒成立,∴函数f(x)在R上单调递增.
(ii)当0<a<
1
2
时,则
1
a
>2
,即-
1
a
<-2

由f(x)>0,解得x>-2或x<-
1
a
;当f(x)<0时,解得-
1
a
<x<-2

∴函数f(x)在区间(-∞,-
1
a
)
和(-2,+∞)上单调递增;在(-
1
a
,-2)
上单调递减.
(iii)当a>
1
2
时,则
1
a
<2
,即-
1
a
>-2

由f(x)>0,解得x>-
1
a
或x<-2
;由f(x)<0,解得-2<x<-
1
a

∴函数f(x)在区间(-∞,-2)和(-
1
a
,+∞)上单调递增;在(-2,-
1
a
)
上单调递减.
(II)∵当x=1时,f(x)有极值,∴f(1)=0.∴3ae(1+
1
a
)=0
,解得a=-1.
∴f(x)=ex(-x2+x+1),f(x)=-ex(x-1)(x+2).
令f(x)>0,解得-2<x<1,∴f(x)在[-2,1]上单调递增,
∵sinθ,cosθ∈[0,1],∴|f(sinθ)-f(cosθ)|≤f(1)-f(0)=e-1<2.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=
ex             (x<0)
a+x        (x≥0)
当a为何值时,函数f(x)是连续的.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ex-ax-1
(1)若f(x)在[-∞,0]上单调递减,在[0,+∞]上单调递增,求实数a的取值范围;
(2)设g(x)=-x2+2x-2,在(1)的条件下,求证:g(x)的图象恒在f(x)图象的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂一模)设f(x)=ex(ax2+x+1).
(I)若a>0,讨论f(x)的单调性;
(Ⅱ)x=1时,f(x)有极值,证明:当θ∈[0,
π2
]时,|f(cosθ)-f(sinθ)|<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ex(ax2+x+1).
(1)若a≤0,讨论f(x)的单调性;
(2)若x=1是函数f(x)的极值点,
证明:当θ∈[0,
π2
]时,|f(cosθ)-f(sinθ)|<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果在(a,b)(a<b)上的函数f(x),对于?x1,x2∈(a,b)都有f(
x1+x2
2
1
2
[f(x1)+f(x2)]
(x1≠x2),则称f(x)在(a.b)上是凹函数,设f(x)在(a,b)上可导,其函数f′(x)在(a,b)上也可导,并记[f′(x)]′=f″(x)
(1)如果f(x)在(a,b)上f″(x)>0,证明:f(x)在(a,b)上是凹函数
(2)若f(x)=(x2-2ax-a+a2)ex-lnx,用(1)的结论证明:当a<-2时f(x)在(0,+∞)上是凹函数.

查看答案和解析>>

同步练习册答案