精英家教网 > 高中数学 > 题目详情
已知椭圆G:
x2
a2
+
y2
b2
=1  (a>b>0)
的离心率为
2
2
,⊙M过椭圆G的一个顶点和一个焦点,圆心M在此椭圆上,则满足条件的点M的个数是(  )
A.4B.8C.12D.16
设椭圆G:
x2
a2
+
y2
b2
=1  (a>b>0)
的左、右焦点分别为F1,F2
左、右顶点分别为A1,A2,下顶点为B1,上顶点为B2
∵椭圆G:
x2
a2
+
y2
b2
=1  (a>b>0)
的离心率为
2
2

⊙M过椭圆G的一个顶点和一个焦点,圆心M在此椭圆上,
∴A1F1、A1F2、A2F1、A2F2、B1F1、B2F1的垂直平分线与椭圆G的坐标都是满足条件的点M,
∴满足条件的点M的个数是12个.
故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
6
3
,右焦点为 (2
2
,0).斜率为1的直线l与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2).
(Ⅰ)求椭圆G的方程;
(Ⅱ)求△PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
2
,且右顶点为A(2,0).
(Ⅰ)求椭圆G的方程;
(Ⅱ)过点P(0,2)的直线l与椭圆G交于A,B两点,当以线段AB为直径的圆经过坐标原点时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•顺义区二模)已知椭圆G:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率e=
2
2
,点F(1,0)为椭圆的右焦点.
(Ⅰ)求椭圆G的方程;
(Ⅱ)过右焦点F作斜率为k的直线l与椭圆G交于M、N两点,若在x轴上存在着动点P(m,0),使得以PM,PN为邻边的平行四边形是菱形,试求出m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•顺义区一模)已知椭圆G:
x2
a2
+
y2
b2
=1  (a>b>0)
的离心率为
2
2
,⊙M过椭圆G的一个顶点和一个焦点,圆心M在此椭圆上,则满足条件的点M的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,F1,F2为椭圆G的两个焦点,点P在椭圆G上,且△PF1F2的周长为4+4
2

(Ⅰ)求椭圆G的方程
(Ⅱ)设直线l与椭圆G相交于A、B两点,若
OA
OB
(O为坐标原点),求证:直线l与圆x2+y2=
8
3
相切.

查看答案和解析>>

同步练习册答案