精英家教网 > 高中数学 > 题目详情
把数列(n∈N*)的所有项按照从大到小的原则写成如图所示的数表,其中的 第k行有2k-1个数,第k行的第s个数(从左数起)记为A(k,s),则A(5,12)表示的数是     这个数可记为A(     ).
【答案】分析:跟据第k行有2k-1个数知每行数的个数成等比数列,要求A(k,s),先求A(k,1),就必须求出前k-1行一共出现了多少个数,根据等比数列求和公式可求,而由可知,每一行数的分母成等差数列,可求A(k,s),令k=5,s=12,可求A(5,12)
解答:解:由第k行有2k-1个数,知每一行数的个数构成等比数列,首项是1,公比是2,
∴前k-1行共有个数,
∴第k行第一个数是A(k,1)=
∴A(k,s)=
∴A(5,12)=
=
得2k-1+2s-2=2009,s≤2k-1
解得k=10,s=494.
故答案为;10,494.
点评:考查数列的性质和应用,解题是注意公式的灵活应用,此题是以一个数阵形式呈现的,考查观察、分析、归纳、解决问题的能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于数列{xn},如果存在一个正整数m,使得对任意的n(n∈N*)都有xn+m=xn成立,那么就把这样一类数列{xn}称作周期为m的周期数列,m的最小值称作数列{xn}的最小正周期,以下简称周期.例如当xn=2时,{xn}是周期为1的周期数列,当yn=sin(
π
2
n)
时,{yn}的周期为4的周期数列.
(1)设数列{an}满足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同时为0),且数列{an}是周期为3的周期数列,求常数λ的值;
(2)设数列{an}的前n项和为Sn,且4Sn=(an+1)2
①若an>0,试判断数列{an}是否为周期数列,并说明理由;
②若anan+1<0,试判断数列{an}是否为周期数列,并说明理由.
(3)设数列{an}满足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,数列{bn}的前n项和Sn,试问是否存在p、q,使对任意的n∈N*都有p≤
Sn
n
≤q
成立,若存在,求出p、q的取值范围;不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

我们把数列{ank}叫做数列{an}的k方数列(其中an>0,k,n是正整数),S(k,n)表示k方数列的前n项的和.
(1)比较S(1,2)•S(3,2)与[S(2,2)]2的大小;
(2)若数列{an}的1方数列、2方数列都是等差数列,a1=a,求数列{an}的k方数列通项公式.
(3)对于常数数列an=1,具有关于S(k,n)的恒等式如:S(1,n)=S(2,n),S(2,n)=S(3,n)等等,请你对数列{an}的k方数列进行研究,写出一个不是常数数列{an}的k方数列关于S(k,n)的恒等式,并给出证明过程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

把数列数学公式(n∈N*)的所有项按照从大到小的原则写成如图所示的数表,其中的 第k行有2k-1个数,第k行的第s个数(从左数起)记为A(k,s),则A(5,12)表示的数是 ________;数学公式这个数可记为A( ________).

查看答案和解析>>

科目:高中数学 来源:《第2章 数列》2010年单元测试卷(1)(解析版) 题型:填空题

把数列(n∈N*)的所有项按照从大到小的原则写成如图所示的数表,其中的 第k行有2k-1个数,第k行的第s个数(从左数起)记为A(k,s),则A(5,12)表示的数是     这个数可记为A(     ).

查看答案和解析>>

同步练习册答案