精英家教网 > 高中数学 > 题目详情

过原点O的椭圆有一个焦点F,且长轴长,求此椭圆的中心的轨迹方程。

解:设椭圆的中心O1,另一焦点F1

,∴

,所求椭圆中心的轨迹方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•江门二模)在平面直角坐标系内,动圆C过定点F(1,0),且与定直线x=-1相切.
(1)求动圆圆心C的轨迹C2的方程;
(2)中心在O的椭圆C1的一个焦点为F,直线l过点M(4,0).若坐标原点O关于直线l的对称点P在曲线C2上,且直线l与椭圆C1有公共点,求椭圆C1的长轴长取得最小值时的椭圆方程.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省烟台市高三上学期期末考试理科数学试卷(解析版) 题型:解答题

椭圆与双曲线有公共的焦点,过椭圆E的右顶点作任意直线l,设直线l交抛物线MN两点,且

(1)求椭圆E的方程;

(2)P是椭圆E上第一象限内的点,点P关于原点O的对称点为A、关于x轴的对称点为Q,线段PQx轴相交于点C,点DCQ的中点,若直线AD与椭圆E的另一个交点为B,试判断直线PAPB是否相互垂直?并证明你的结论

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系内,动圆C过定点F(1,0),且与定直线x=-1相切.
(1)求动圆圆心C的轨迹C2的方程;
(2)中心在O的椭圆C1的一个焦点为F,直线l过点M(4,0).若坐标原点O关于直线l的对称点P在曲线C2上,且直线l与椭圆C1有公共点,求椭圆C1的长轴长取得最小值时的椭圆方程.

查看答案和解析>>

科目:高中数学 来源:《圆锥曲线》2013年广东省十二大市高三二模数学试卷汇编(理科)(解析版) 题型:解答题

在平面直角坐标系内,动圆C过定点F(1,0),且与定直线x=-1相切.
(1)求动圆圆心C的轨迹C2的方程;
(2)中心在O的椭圆C1的一个焦点为F,直线l过点M(4,0).若坐标原点O关于直线l的对称点P在曲线C2上,且直线l与椭圆C1有公共点,求椭圆C1的长轴长取得最小值时的椭圆方程.

查看答案和解析>>

同步练习册答案