精英家教网 > 高中数学 > 题目详情
函数f(x)=
x3-6x2+9x-4,(x≥0)
ln|x|,(x<0)
的零点个数为(  )
分析:当x≥0时,f(x)=x3-6x2+9x-4,利用导数判断函数的单调性,再根据单调性以及函数的极值得到函数的
零点个数.当x<0时,由f(x)=ln|x|=0可得函数的零点.综上可得函数零点个数.
解答:解:当x≥0时,f(x)=x3-6x2+9x-4,f′(x)=3x2-12x+9=3(x-1)(x-3).
令f′(x)=0可得x=1,或 x=3.
在(0,1)上,f′(x)>0,f(x)单调递增. 在(1,3)上,f′(x)<0,f(x)单调递减.
在(3,+∞)上,f′(x)>0,f(x)单调递增.
故f(1)为极大值,f(3)为极小值.f(1)=0,f(3)=-4,
故f(x)在[0,+∞)上有两个零点.
当x<0时,f(x)=ln|x|,令f(x)=ln|x|=0,可得x=-1,故f(x)在(-∞,0)上有唯一的零点.
综上可得,函数f(x)=
x3-6x2+9x-4(x≥0)
ln|x|(x<0)
的零点个数为3,
故选D.
点评:本题考查函数零点的定义以及函数零点判定定理的应用,体现了分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)-x=0有实数根;②函数f(x)的导数f'(x)满足0<f'(x)<1.”
(1)判断函数f(x)=
x
3
+
cosx
4
是否是集合M中的元素,并说明理由;
(2)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]30D,都存在-15P[m,n],使得等式f(n)-f(m)=(n-m)f'(x0)成立”,试用这一性质证明:方程f(x)-x=0只有一个实数根;
(3)设
1
5
是方程f(x)-x=0的实数根,求证:对于f(x)定义域中任意的x2,x3,当|x2-x1|<1,且|x3-x1|<1时,|f(x3)-f(x2)|<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,函数f(x)=x3-
3
2
x2+3x-
1
4
,则它的对称中心为
(
1
2
,1)
(
1
2
,1)
;计算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)
=
2012
2012

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+
1
2
ax2+b

(1)若y=f(x)在x=1处的极值为
5
2
,求y=f(x)的解析式并确定其单调区间;
(2)当x∈(0,1]时,若y=f(x)的图象上任意一点处的切线的倾斜角为θ,求当0≤θ≤
π
4
时a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•孝感模拟)命题p:方程2x2+mx-2m2-5m-3=0有一正根一负根;
命题q:函数f(x)=x3+mx2+(m+
43
)x+6
在R上有极值;
若命题“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断函数f(x)=
x3(ax-1)ax+1
(a>0,a≠1)
的奇偶性,并加以证明.

查看答案和解析>>

同步练习册答案