精英家教网 > 高中数学 > 题目详情
在正方体ABCD—A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=a,则MN与平面BB1C1C的位置关系是(    )

A.相交           B.平行           C.垂直           D.不能确定

答案:B  要判断MN与平面BB1C1C的位置关系,只需求出平面BB1C1C的法向量与的关系.如图,建立空间直角坐标系,则A1(a,a,0),B(a,0,a),C(0,0,a),A(a,a,a),则

M(a,a,a),N(a,a,a).

所以=(,0,a).而平面BB1C1C的一个法向量为n=(0,1,0).

所以·n=0.

所以n.

所以MN∥平面BB1C1C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E在底面ABCD内的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上结论正确的为
①③④
.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E为D′C′的中点,则二面角E-AB-C的大小为
45°
45°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E,F分别是AB′,BC′的中点. 
(1)若M为BB′的中点,证明:平面EMF∥平面ABCD.
(2)求异面直线EF与AD′所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在正方体ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H为垂足,则B1H与平面AD1C的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交棱AA′于E,交棱CC′于F,则:
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E有可能是菱形;
④四边形BFD′E有可能垂直于平面BB′D.
其中所有正确结论的序号是
 

查看答案和解析>>

同步练习册答案