精英家教网 > 高中数学 > 题目详情

等差数列{an}的公差d≠0,它的部分项依次组成的数列,,,…,,…,成等比数列,其中k1=1,k2=5,k3=17.

(1)求等比数列,,,…,,…的公比q.

(2)kn,并求k1+k2+…+kn.

 

答案:
解析:

(1)∵{an}成等差数列.

=a1

=a5=a1+4d

=a17=a1+16d

又{}成等比数列.

a52=a1a17即(a1+4d)2=a1(a1+16d)

整理得:16d2=8a1d,又d≠0.

a1=2d, =a1=2d,

=a5=6d

=3

∴{}数列的公比为3.

(2)由(1)得an=a1+(n-1)d=(n+1)d

=(kn+1)d

=a1qn1=2d·3n1

kn=2·3n1-1

k1+k2+…+kn

=(2-1)+(2·3-1)+…+(2·3n1-1)

=2(1+3+…+3n1)-n

=3nn-1

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果一个数列的各项都是实数,且从第二项开始,每一项与它前一项的平方差是相同的常数,则称该数列为等方差数列,这个常数叫这个数列的公方差.
(1)设数列{an}是公方差为p的等方差数列,求an和an-1(n≥2,n∈N)的关系式;
(2)若数列{an}既是等方差数列,又是等差数列,证明该数列为常数列;
(3)设数列{an}是首项为2,公方差为2的等方差数列,若将a1,a2,a3,…,a10这种顺序的排列作为某种密码,求这种密码的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

按照等差数列的定义我们可以定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5,那么a8的值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)如果一个数列的各项都是实数,且从第二项起,每一项与它的前一项的平方差是同一个常数,则称该数列为等方差数列,这个常数叫这个数列的公方差.
(Ⅰ)若数列{an}既是等方差数列,又是等差数列,求证:该数列是常数列;
(Ⅱ)已知数列{an}是首项为2,公方差为2的等方差数列,数列{bn}的前n项和为Sn,且满足an2=2n+1bn.若不等式2nSn>m•2n-2an2对?n∈N*恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果一个数列的各项均为实数,且从第二项起开始,每一项的平方与它前一项的平方的差都是同一个常数,则称该数列为等方差数列,这个常数叫做这个数列的公方差.
(1)若数列{bn}是等方差数列,b1=1,b2=3,求b7
(2)是否存在一个非常数数列的等差数列或等比数列,同时也是等方差数列?若存在,求出这个数列;若不存在,说明理由.
(3)若正项数列{an}是首项为2、公方差为4的等方差数列,数列{
1
an
}
的前n项和为Tn,是否存在正整数p,q,使不等式Tn
pn+q
-1
对一切n∈N*都成立?若存在,求出p,q的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若各项都是实数的数列从第二项起,每一项与它前一项的平方差是同一常数,则称该数列为等方差数列,这个常数叫这个数列的公方差.
(Ⅰ)若数列{an}是等差数列,前n项和为Tn,并且an2=T2n-1,求通项an
(Ⅱ)若数列{an}是首项为2,公方差为2的等方差数列,数列{bn}的前n项和为Sn,且an2=2n+1bn2nSn>m•2n-2an2对?n∈N*恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案