精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,已知a1=1,且an+2SnSn-1=0(n≥2),
(1)求数列{Sn}的通项公式;
(2)设Sn=
1
f(n)
,bn=f(
1
2n
)+1.记Pn=S1S2+S2S3+…+SnSn+1,Tn=b1b2+b2b3+…+bnbn+1,试求Tn,并证明Pn
1
2
分析:(1)利用数列递推式,再写一式,两式相减,可得数列{Sn}的通项公式;
(2)确定数列的通项,利用裂项法求数列的和,即可得到结论.
解答:(1)解:∵an+2SnSn-1=0(n≥2),
∴Sn-Sn-1+2SnSn-1=0.---------(3分)
1
Sn
-
1
Sn-1
=2.
又∵a1=1,---------------(5分)
∴Sn=
1
2n-1
(n∈N+).---------------(7分)
(2)证明:∵Sn=
1
f(n)
,∴f(n)=2n-1.--------------------------(8分)
∴bn=2(
1
2n
)-1+1=(
1
2
n-1.---------------------------------------(9分)
Tn=(
1
2
0•(
1
2
1+(
1
2
1•(
1
2
2+…+(
1
2
n-1•(
1
2
n=(
1
2
1+(
1
2
3+(
1
2
5+…+(
1
2
2n-1
=
2
3
[1-(
1
4
n].-------------------------------------------------------(11分)
∴Pn=
1
1×3
+
1
3×5
+…+
1
(2n-1)(2n+1)
---------------(13分)
=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)
=
1
2
(1-
1
2n+1
)
-------------------------------(14分)
点评:本题考查数列递推式,考查数列的通项与求和,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案