精英家教网 > 高中数学 > 题目详情
如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1B1C1均为60°,平面AA1C1C⊥平面ABCD,
(Ⅰ)求证:BD⊥AA1
(Ⅱ)求二面角D-AA1-C的余弦值;
(Ⅲ)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由。

解:设BD与AC交于O,则BD⊥AC,连结A1O,
在△AA1O中,AA1=2,AO=1,∠A1AO=60°,
所以A1O2=AA12+AO2-2AA1·AOcos60°=3,
所以AO2+A1O2=AA12,所以A1O⊥AO。
由于平面AA1C1C⊥平面ABCD,
所以A1O⊥平面ABCD。
以OB,OC,OA1所在直线分别为x轴,y轴,z轴,
建立如图所示的空间直角坐标系,则

 (Ⅰ)由于


(Ⅱ)由于OB⊥平面
∴平面的一个法向量为
,则
,则


所以,二面角D-A1A-C的平面角的余弦值为
(Ⅲ)假设在直线CC1上存在点P,使BP∥平面DA1C1
,P(x,y,z),

从而有
,则

,则,取
因为BP∥平面DA1C1,则,即
,即点P在C1C的延长线上,且

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1B1C1均为60°,平面AA1C1C⊥平面ABCD.
(I)求证:BD⊥AA1
(II)求二面角D-AA1-C的余弦值;
(III)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底边长均为a,且∠A1AD=∠A1AB=60°.
①求证四棱锥A1-ABCD为正四棱锥;
②求侧面A1ABB1与截面B1BDD1的锐二面角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

17、如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,AC∩BD=O,侧棱AA1⊥BD,点F为DC1的中点.
(I) 证明:OF∥平面BCC1B1
(II)证明:平面DBC1⊥平面ACC1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,平面AA1C1C⊥平面ABCD.?
(1)证明:BD⊥AA1;?
(2)证明:平面AB1C∥平面DA1C1
(3)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1CC1⊥平面ABCD,∠A1AC=60°
(1)求二面角D-A1A-C的大小.
(2)求点B1到平面A1ADD1的距离
(3)在直线CC1上是否存在P点,使BP∥平面DA1C1,若存在,求出点P的位置;若不存在,说出理由.

查看答案和解析>>

同步练习册答案