精英家教网 > 高中数学 > 题目详情
数列{an}满足:a1=5,an+1-an=
2(an+1+an)+15
,数列{bn}的前n项和Sn满足:Sn=2(1-bn).
(1)证明:数列{an+1-an}是一个等差数列,并求出数列{an}的通项公式;
(2)求数列{bn}的通项公式,并求出数列{anbn}的最大项.
解 (1)令n=1得a2-5=
2(a2+5)+15
,解得a2=12,
由已知得(an+1-an2=2(an+1+an)+15        ①
(an+2-an+12=2(an+2+an+1)+15     ②
将②-①得(an+2-an)(an+2-2an+1+an)=2(an+2-an),
由于数列{an}单调递增,所以an+2-an≠0,于是
an+2-2an+1+an=2,即(an+2-an+1)-(an+1-an)=2,
所以{an+1-an}是首项为7,公差为2的等差数列,于是
an+1-an=7+2(n-1)=2n+5,所以
an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(2n+3)+(2n+1)+…+7+5=n(n+4).
(2)在 Sn=2(1-bn)中令n=1得b1=2(1-b1),解得b1=
2
3

∵Sn=2(1-bn),Sn+1=2(1-bn+1),相减得bn+1=-2bn+1+2bn,即3bn+1=2bn
∴{bn}是首项和公比均为
2
3
的等比数列,
∴bn=(
2
3
n
从而anbn=n(n+4)(
2
3
n
设数列{anbn}的最大项为akbk,则有
k(k+4)(
2
3
k≥(k+1)(k+5)(
2
3
k+1,且k(k+4)(
2
3
k≥(k-1)(k+3)(
2
3
k-1
所以k2≥10,且k2-2k-9≤0,因为k是自然数,解得k=4.
所以数列{anbn}的最大项为a4b4=
512
81
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}满足a1=a,an+1=can+1-c(n∈N*),其中a,c为实数,且c≠0.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设a=
1
2
,c=
1
2
bn=n(1-an)(n∈N*)
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=a,an+1=
an+3
2
,n=1,2,3,….
(Ⅰ)若an+1=an,求a的值;
(Ⅱ)当a=
1
2
时,证明:an
3
2

(Ⅲ)设数列{an-1}的前n项之积为Tn.若对任意正整数n,总有(an+1)Tn≤6成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•天津模拟)设数列{an}满足a1=a,an+1=can+1-c(n∈N*),其中a,c为实数,且c≠0.
(1)求证:a≠1时数列{an-1}是等比数列,并求an
(2)设a=
1
2
c=
1
2
bn=n(1-an)(n∈N*)
,求数列{bn}的前n项和Sn
(3)设a=
3
4
,c=-
1
4
cn=
3+an
2-an
(n∈N*),记dn=c2n-c2n-1(n∈N*)
,设数列{dn}的前n项和为Tn,求证:对任意正整数n都有Tn
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连二模)已知a为实数,数列{an}满足a1=a,当n≥2时,an=
an-1-4 (an-1>4)
5-an-1 (an-1≤4)

(I)当a=200时,填写下列表格;
N 2 3 51 200
an
(II)当a=200时,求数列{an}的前200项的和S200
(III)令b n=
an
(-2)n
,Tn=b1+b2…+bn求证:当1<a<
5
3
时,T n
5-3a
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知常数a、b都是正整数,函数f(x)=
x
bx+1
(x>0),数列{an}满足a1=a,
1
an+1
=f(
1
an
)
(n∈N*
(1)求数列{an}的通项公式;
(2)若a=8b,且等比数列{bn}同时满足:①b1=a1,b2=a5;②数列{bn}的每一项都是数列{an}中的某一项.试判断数列{bn}是有穷数列或是无穷数列,并简要说明理由;
(3)对问题(2)继续探究,若b2=am(m>1,m是常数),当m取何正整数时,数列{bn}是有穷数列;当m取何正整数时,数列{bn}是无穷数列,并说明理由.

查看答案和解析>>

同步练习册答案