精英家教网 > 高中数学 > 题目详情
设f(x)=的定义域为   
【答案】分析:f(x)=的定义域为{x|},由此能求出结果.
解答:解:f(x)=的定义域为:
{x|},
解得0<x<1.
故答案为:(0,1).
点评:本题考查函数的定义域的求法,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+mx2 (x≤0)
ex-1 (x>0).

(1)当x≤0时,函数f(x)在(-1,f(-1))处的切线方程为x-3y+1=0,求m的值;
(2)当x>0时,设f(x)+1的反函数为g-1(x)(g-1(x)的定义域即是f(x)+1的值域).证明:函数h(x)=
1
3
x-g-1(x)
在区间(e,3)内无零点,在区间(3,e2)内有且只有一个零点;
(3)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A是由适合以下性质的函数f(x)构成的:对于定义域内任意两个不相等的实数x1,x2,都有
1
2
[f(x1)+f(x2)]>f(
x1+x2
2
)

(1)试判断f(x)=x2及g(x)=log2x是否在集合A中,并说明理由;
(2)设f(x)∈A且定义域为(0,+∞),值域为(0,1),f(1)>
1
2
,试求出一个满足以上条件的函数f (x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域是[-2,1],则函数f(
x-1
x
)的定义域是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在[-1,1]上的奇函数,且对任意a,b∈[-1,1],当a+b≠0时,都有
f(a)+f(b)a+b
>0

(1)证明:函数f(x)在[-1,1]上是增函数;
(2)如果函数g(x)=f(x-c)和h(x)=f(x-c2)的定义域的交集是空集,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为[0,1],则函数f(x-1)的定义域为
[1,2]
[1,2]

查看答案和解析>>

同步练习册答案