精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=x2-2x+2.
(1)求f(x)单调区间
(2)求f(x)在区间[$\frac{1}{2}$,3]上的最大值和最小值;
(3)若g(x)=f(x)-mx在[2,4]上是单调函数,求m的取值范围.

分析 (1)求出函数 的对称轴,从而求出函数 的单调区间即可;
(2)根据f(x)=x2-2x+2=(x-1)2+1,x∈[$\frac{1}{2}$,3],再利用二次函数的性质求得f(x)在区间[$\frac{1}{2}$,3]上的最值即可;
(3)根据g(x)=f(x)-mx=x2-(m+2)x+2在[2,4]上是单调函数,可得$\frac{m+2}{2}$≤2,或$\frac{m+2}{2}$≥4,由此求得m的取值范围.

解答 解:(1)f(x)的对称轴是x=1,故函数f(x)在(-∞,1)递减,在(1,+∞)递增;
(2)∵f(x)=x2-2x+2=(x-1)2+1,x∈[$\frac{1}{2}$,3],
∴f(x)的最小值是f(1)=1,f(x)的最大值是f(3)=5,
即f(x)在区间[$\frac{1}{2}$,3]上的最大值是5,最小值是1.
(3)∵g(x)=f(x)-mx=x2-(m+2)x+2
,∴$\frac{m+2}{2}$≤2,或$\frac{m+2}{2}$≥4,
解得m≤2或m≥6,
故m的取值范围是(-∞,2]∪[6,+∞).

点评 本题主要考查求二次函数在闭区间上的最值,二次函数的性质应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.不等式(2-a)x2-2(a-2)+4>0对于一切实数都成立,则(  )
A.{a|-2<a≤2}B.{a|-2<a<2}C.{a|a<-2}D.{a|a<-2或a>2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列命题的正确的是(  )
A.若直线 l上有无数个点不在平面 α内,则  l∥α
B.若直线 l与平面α平行,则l与平面α内的任意一条直线都平行
C.如果两条平行直线中的一条与一个平面α平行,那么另一条也与这个平面平行.
D.若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设幂函数f(x)=(m+3)xm,则f(2)-f(-2)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知圆C的方程为x2+y2-4x-2y=0,若倾斜角为$\frac{π}{4}$的直线l被圆C所截得的弦长为2$\sqrt{3}$,则直线l的方程为(  )
A.y=x+1B.y=x-3C.y=x+1或y=x-3D.y=x+1或y=x+3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$\frac{{x}^{2}}{2}$+y2=1的左右焦点分别为F1,F2,直线l过椭圆的右焦点F2与椭圆交于A,B 两点,
(Ⅰ)当直线l的斜率为1,点P为椭圆上的动点,满足使得△ABP的面积为$\frac{{2\sqrt{5}-2}}{3}$的点P有几个?并说明理由.
(Ⅱ)△ABF1的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.入射光线沿直线x-2y+3=0射向直线l:y=x,被l反射后的光线所在直线的方程是(  )
A.2x+y-3=0B.2x-y-3=0C.2x+y+3=0D.2x-y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=loga(x+1),g(x)=loga(1-x)(a>0,且a≠1).设F(x)=f(x)+g(x),G(x)=f(x)-g(x),解决下列问题:
(1)求函数F(x)的定义域;
(2)证明F(x)为偶函数;并求F(x)的值域;
(3)证明G(x)为奇函数;并判断函数G(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若函数y=(a2-3a+3)•logax是对数函数,又函数$f(x)={log_2}({b^x}-{a^x})$中f(1)=1,
(1)求a,b的值;
(2)当x∈[1,3]时,求f(x)的最小值.

查看答案和解析>>

同步练习册答案