精英家教网 > 高中数学 > 题目详情
f(x)=
1
x-1
,g(x)=x2-1
,则f(x)•g(x)=______.
因为函数f(x)的定义域为{x|x≠1}.
因为f(x)=
1
x-1
,g(x)=x2-1

则f(x)•g(x)=
1
x-1
•(x2-1)=x+1,(x≠1)

故答案为:f(x)•g(x)=
1
x-1
•(x2-1)=x+1,(x≠1)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=|
1x
-1|
,其中x∈(o,+∞).
(I)在给定的坐标系中,画出函数f(x)的图象;
(II)设0<a<b,且f(a)=f(b),证明:ab>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
x+1
,点A0表示原点,点An(n,f(n))(n∈N*),θn是向量
a
与向量
i
=(1,0)
的夹角,
an
=
A0A1
+
A1A2
+
A2A3
+…+
An-1An
,设Sn=tanθ1+tanθ2+tanθ3+…+tanθn,则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
1
x-1
,g(x)=x2-1
,则f(x)•g(x)=
1
x-1
•(x2-1)=x+1,(x≠1)
1
x-1
•(x2-1)=x+1,(x≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区二模)对于定义域分别为M,N的函数y=f(x),y=g(x),规定:
函数h(x)=
f(x)•g(x),当x∈M且x∈N
f(x),当x∈M且x∉N
g(x),当x∉M且x∈N

(1)若函数f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函数h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,设bn为曲线y=h(x)在点(an,h(an))处切线的斜率;而{an}是等差数列,公差为1(n∈N*),点P1为直线l:2x-y+2=0与x轴的交点,点Pn的坐标为(an,bn).求证:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5

(3)若g(x)=f(x+α),其中α是常数,且α∈[0,2π],请问,是否存在一个定义域为R的函数y=f(x)及一个α的值,使得h(x)=cosx,若存在请写出一个f(x)的解析式及一个α的值,若不存在请说明理由.

查看答案和解析>>

同步练习册答案