精英家教网 > 高中数学 > 题目详情
已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A-BCD,如图所示. 
(1)当a=2时,求证:AO⊥平面BCD;
(2)当二面角A-BD-C的大小为120°时,求二面角A-BC-D的正切值.

【答案】分析:(1)先根据AC=a=2得到AC2=AO2+CO2,进而得AO⊥CO,再结合AC,BD是正方形ABCD的对角线对应的AO⊥BD进而证明结论;
(2)先建立空间直角坐标系,结合二面角A-BD-C的大小为120°时对应的结论,进而求出两个半平面的法向量,即可求出结论.
解答:解:(1)证明:根据题意,在△AOC中,AC=a=2,
所以AC2=AO2+CO2,所以AO⊥CO.…(2分)
因为AC,BD是正方形ABCD的对角线,
所以AO⊥BD.…(3分)
因为BD∩CO=O,
所以AO⊥平面BCD;.…(4分)
(2):由(1)知,CO⊥OD,如图,以O为原点,OC,OD所在的直线分别为x轴,y轴建立如图的空间直角坐标系O-xyz,…(5分)
则有O(0,0,0),
设A(x,0,z)(x<0),则.…(6分)
又设面ABD的法向量为n=(x1,y1,z1),
  
所以y1=0,令x1=z,则z1=-x
所以n=(z,0,-x).…(8分)
因为平面BCD的一个法向量为m=(0,0,1),
且二面角A-BD-C的大小为120°,…(9分)
所以,得
因为,所以
解得.所以.…(10分)
设平面ABC的法向量为l=(x2,y2,z2),因为
,即令x2=1,则
所以.…(12分)
设二面角A-BC-D的平面角为θ,
所以.…(13分)
所以
所以二面角A-BC-D的正切值为.…(14分)
点评:本题主要考察用空间向量求平面间的夹角.解决这类问题的关键在于求出两个半平面的法向量.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正方形ABCD的边长为2,中心为O,四边形PACE是直角梯形,设PA⊥平面ABCD,且PA=2,CE=1,
(1)求证:面PAD∥面BCE.
(2)求PO与平面PAD所成角的正弦.
(3)求二面角P-EB-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方形ABCD的中心为E(-1,0),一边AB所在的直线方程为x+3y-5=0,求其它三边所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方形ABCD的边长是4,对角线AC与BD交于O,将正方形ABCD沿对角线BD折成60°的二面角,并给出下面结论:①AC⊥BD;②AD⊥CO;③△AOC为正三角形;④cos∠ADC=
3
4
,则其中的真命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方形ABCD的边长为1,设
AB
=
a
BC
=
b
AC
=
c
,则|
a
-
b
+
c
|等于(  )
A、0
B、
2
C、2
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方形ABCD的边长为
2
AB
=
a
BC
=
b
AC
=
c
,则|
a
+
b
+
c
|
=
4
4

查看答案和解析>>

同步练习册答案