精英家教网 > 高中数学 > 题目详情
若正实数x,y满足2x+y+6=xy,则xy的最小值是______.
由条件利用基本不等式可得xy=2x+y+6≥2
2xy
+6

令xy=t2,即 t=
xy
>0,可得t2-2
2
t-6≥0

即得到(t-3
2
)(t+
2
)≥0
可解得 t≤-
2
,t≥3
2

又注意到t>0,故解为 t≥3
2

所以xy≥18.
故答案应为18.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若正实数x、y满足:2x+y=1,则
1
x
+
1
y
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若正实数x,y满足x+y=1,且t=2+x-
1
4y
.则当t取最大值时x的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若正实数x,y满足x+y=1,且t=2+x-
1
4y
.则当t取最大值时x的值为
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知正数a、b满足a+b=1.求:
1
a
+
2
b
的最小值.
(2)若正实数x、y满足x+y+3=xy,求xy的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若正实数x,y满足
2x-y≤0
x-3y+5≥0
,则z=(
1
4
)
x
(
1
2
)
y
的最小值为(  )
A、
1
16
B、
1
4
C、
1
2
D、2

查看答案和解析>>

同步练习册答案