精英家教网 > 高中数学 > 题目详情
求抛物线=1+x2与直线x=0,x=1,y=0所围成的平面图形的面积S.

      

解析:S=f()?

       =[1+()2]?

       =1+ ()2?

       =1+(1-)(1-)?

       =1+.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线D的顶点是椭圆Q:
x2
4
+
y2
3
=1
的中心O,焦点与椭圆Q的右焦点重合,点A(x1,y1),B(x2,y2)(x1x2≠0)是抛物线D上的两个动点,且|
OA
+
OB
|=|
OA
-
OB
|
(Ⅰ)求抛物线D的方程及y1y2的值;
(Ⅱ)求线段AB中点轨迹E的方程;
(Ⅲ)求直线y=
1
2
x
与曲线E的最近距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知直线l:x=my+1过椭圆C:
x2
a2
+
y2
b2
=1
的右焦点F,抛物线:x2=4
3
y
的焦点为椭圆C的上顶点,且直线l交椭圆C于A、B两点,点A、F、B在直线g:x=4上的射影依次为点D、K、E.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l交y轴于点M,且
MA
=λ1
AF
MB
=λ2
BF
,当m变化时,探求λ12的值是否为定值?若是,求出λ12的值,否则,说明理由;
(Ⅲ)连接AE、BD,试证明当m变化时,直线AE与BD相交于定点N(
5
2
,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
b2
+
y2
a2
=1(a>b>0)
的左、右焦点分别为F1(0,c)、F2(0,-c)(c>0),抛物线P:x2=2py(p>0)的焦点与F1重合,过F2的直线l与抛物线P相切,切点E在第一象限,与椭圆C相交于A、B两点,且
F2B
=λ
AF2

(1)求证:切线l的斜率为定值;
(2)若动点T满足:
ET
=μ(
EF1
+
EF2
),μ∈(0,
1
2
)
,且
ET
OT
的最小值为-
5
4
,求抛物线P的方程;
(3)当λ∈[2,4]时,求椭圆离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求抛物线f(x)=1+x2与直线x=0,x=1,y=0所围成的平面图形的面积S.

查看答案和解析>>

同步练习册答案