精英家教网 > 高中数学 > 题目详情

求函数y=x3-2x2-x+2的零点.

答案:
解析:

  解:∵y=x3-2x2-x+2=x2(x-2)-(x-2)=(x-2)(x-1)(x+1),

  ∴方程x3-2x2-x+2=0,即(x-2)(x-1)(x+1)=0的实数根为-1、1、2,

  即函数y=x3-2x2-x+2的零点为-1、1、2.

  思路分析:注意到f(2)=0,因此x3-2x2-x+2可分解出x-2这一因式,进而可分解因式x3-2x2-x+2,从而求出函数的零点.


练习册系列答案
相关习题

科目:高中数学 来源:全优设计选修数学-2-2苏教版 苏教版 题型:044

(1)求函数y=x3-2x2+x的单调区间;

(2)求y=+cosx的单调区间;

(3)确定函数y=ln(2x-1)的单调区间.

查看答案和解析>>

科目:高中数学 来源:浙江省台州市四校2012届高三第一次联考数学文科试题 题型:044

对于函数f(x)=-x4x3+ax2-2x-2,其中a为实常数,已知函数

yf(x)的图象在点(-1,f(-1))处的切线与y轴垂直.

(Ⅰ)求实数a的值;

(Ⅱ)若关于x的方程f(3x)=m有三个不等实根,求实数m的取值范围;

查看答案和解析>>

科目:高中数学 来源:江苏省梅村高级中学2012届高三11月练习数学试题 题型:044

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).

定义:(1)设(x)是函数y=f(x)的导数y=(x)的导数,若方程(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”;

定义:(2)设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.

己知f(x)=x3-3x2+2x+2,请回答下列问题:

(1)求函数f(x)的“拐点”A的坐标

(2)检验函数f(x)的图象是否关于“拐点”A对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)

(3)写出一个三次函数G(x),使得它的“拐点”是(-1,3)(不要过程)

查看答案和解析>>

科目:高中数学 来源:江苏省某重点中学2012届高三上学期11月练习数学试题 题型:044

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).

定义:(1)设(x)是函数y=f(x)的导数y=(x)的导数,若方程(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”;

定义:(2)设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.

己知f(x)=x3-3x2+2x+2,请回答下列问题:

(1)求函数f(x)的“拐点”A的坐标

(2)检验函数f(x)的图象是否关于“拐点”A对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)

(3)写出一个三次函数G(x),使得它的“拐点”是(-1,3)(不要过程)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省高三高考压轴理科数学试卷(解析版) 题型:解答题

已知函数f(x)=-x3x2-2x(a∈R).

(1)当a=3时,求函数f(x)的单调区间;

(2)若对于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求实数a的取值范围;

(3)若过点可作函数y=f(x)图象的三条不同切线,求实数a的取值范围.

 

查看答案和解析>>

同步练习册答案