精英家教网 > 高中数学 > 题目详情

已知数列{an}满足an+1=|an-1|(n∈N*).
(1)a1=,计算a2,a3,a4的值,并写出数列{an}(n∈N*,n≥2)的通项公式;
(2) 是否存在a1,n0(a1∈R,n0∈N*),使得当n≥n0(n∈N*)时, an恒为常数,若存在,求出a1,n0,否则说明理由;
(3) 若a1=a∈(k,k+1),(k∈N*). ,求{an}的前3k项的和S3k(用k,a表示).

解(1) ,,以此类推     
时, 其中.  
(2)∵
∴an≥1时, .
若0<a1<1时, a2=1-a1,a3=1-a2=a1,此时只需,故存在.  
若a1=b≥1时,不妨设若时,时,
,

∴a1=m+,n≥m+1时,
若a1=c<0,不妨设,
∴a2=-c+1∈(l,l+1),
∴a3=a2-1=-c,a4=-c-1,

,,则
 故存在三组 : ; ;  ;其中   
(3) ,时,
,  
.  
  
 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案