精英家教网 > 高中数学 > 题目详情
已知函数f(x)=an-1x2+(1-an)x+an-1,(x>0,n≥2)
(1)若f(1)=0,a1=1,求数列{an}的通项公式
(2)若an>1,(n∈N*),至少存在一个正数x,使f(x)≤0成立,
求证:
1
a1+1
+
1
a2+1
+
1
a3+1
+
+
1
an+1
<1
(n∈N*
分析:(1)根据f(1)=0,a1=1,可得an=2an-1+1,变形得an+1=2(an-1+1),从而求出数列{an}的通项公式;
(2)由韦达定理分析易知,方程f(x)=0有根则必有正根,从而只需△≥0即可,然后利用等比数列求和公式可得
1
a1+1
+
1
a2+1
+
1
a3+1
+
+
1
an+1
1
2
+
1
22
+
+
1
2n
=
1
2
(1-
1
2n
)
1-
1
2
=1-
1
2n
<1
,证得结论.
解答:解:(1)f(1)=an-1+1-an+an-1=0⇒an=2an-1+1⇒an+1=2(an-1+1)
∴an+1=2n⇒an=2n-1,(n∈N*
证明:(2)由韦达定理分析易知,方程f(x)=0有根则必有正根,∴只需△≥0即可△=(1-an)2-4
a
2
n-1
≥0⇒(an-1)2≥4
a
2
n-1
an-1≥2an-1
an+1
an-1+1
≥2

an+1=(a1+1)•
a2+1
a1+1
a3+1
a2+1
an+1
an-1+1
≥(a1+1)•2n-12n

1
a1+1
+
1
a2+1
+
1
a3+1
+
+
1
an+1
1
2
+
1
22
+
+
1
2n
=
1
2
(1-
1
2n
)
1-
1
2
=1-
1
2n
<1
点评:本题主要考查了构造法求数列的通项公式,同时考查了韦达定理的运用和等比数列的求和,是一道数列与不等式综合的题,有一定的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案