精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln
x-4
x-6
+
x
12

(Ⅰ)求f(x)的单调区间以及极值;
(Ⅱ)函数y=f(x)的图象是否为中心对称图形?如果是,请给出严格证明;如果不是,请说明理由.
分析:(Ⅰ)求导函数f′(x)=
x(x-10)
12(x-4)(x-6)
,确定函数的定义域,由f′(x)>0得函数的增区间,由f′(x)<0得函数的减区间,从而可确定函数的极值;
(Ⅱ)f(x)图象上取得极值的两点的中点为(5,
5
12
)
.再证明函数f(x)图象关于此点对称.
解答:解:(Ⅰ)f′(x)=
x(x-10)
12(x-4)(x-6)

∵x∈(-∞,4)∪(6,+∞)
由f′(x)>0得f(x)在区间(-∞,0]和[10,+∞)上递增
由f′(x)<0得f(x)在区间[0,4)和(6,10]上递减
于是有[f(x)]极小值=f(0)=ln
2
3
[f(x)]极大值=f(10)=ln
3
2
+
5
6

(Ⅱ)因为f(x)图象上取得极值的两点的中点为(5,
5
12
)

下证,函数f(x)图象关于此点对称.     
设f(x)的定义域为D,?∈D,有:f(x)+f(10-x)=ln
x-4
x-6
+
x
12
+ln
6-x
4-x
+
10-x
12
=
5
6

所以,函数y=f(x)的图象关于点(5,
5
12
)
对称.
点评:本题以函数为载体,考查导数知识的运用,考查函数的单调性,考查函数的中心对称,正确求导,利用函数的定义域是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案