精英家教网 > 高中数学 > 题目详情

函数y=f(x)=Asin(ωx+θ),(A,ω,θ>0)在一个周期内的图象如图所示,D为图象的最高点,数学公式为图象与x轴的交点,且△BCD为正三角形.
(Ⅰ)求y=f(x)的解析式;
(Ⅱ)若将y=f(x)的图象向右平移2个单位得到函数y=g(x),求y=g(x)的单调减区间.

解:(Ⅰ)由题意知BC==+=4,∴ω=
由五点法作图可得 +θ=0,∴θ=
再由A=BC=2,可得函数的解析式为
(Ⅱ)由题意可得
,可得 ,k∈z.
,即 ,(k∈Z)
故函数的减区间为(k∈Z).
分析:(Ⅰ)由题意知BC= 求得ω,由五点法作图求得 θ,根据△BCD为正三角形求得振幅A,从而求得函数的解析式
(Ⅱ)函数y=Asin(ωx+∅)的图象变换规律,求得,令,求得x的范围,即可得到函数的减区间.
点评:本题主要考查由函数y=Asin(ωx+∅)的部分图象求解析式,函数y=Asin(ωx+∅)的图象变换规律,正弦函数的减区间,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域[-1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示
x -1 0 2 4 5
F(x) 1 2 1.5 2 1
下列关于函数f(x)的命题;
①函数f(x)的值域为[1,2];
②函数f(x)在[0,2]上是减函数
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)-a最多有4个零点.
其中正确命题的序号是
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示,给出关于f(x)的下列命题:
x -1 0 2 4 5
f(x) 1 2 0 2 1
①函数y=f(x)在x=2时,取极小值;
②函数f(x)在[0,1]是减函数,在[1,2]是增函数;
③当1<a<2时,函数y=f(x)-a有4个零点;
④如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最小值为0,
其中所有正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示. 下列关于f(x)的命题:
x -1 0 4 5
f(x) 1 2 2 1
①函数f(x)的极大值点为0,4;
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点;
⑤函数y=f(x)-a的零点个数可能为0、1、2、3、4个.
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天津模拟)已知函数f(x)的定义域为[-1,5],部分对应值如下表.
x -1 0 4 5
f(x) 1 2 2 1
f(x)的导函数y=f′(x)的图象如图所示:
下列关于f(x)的命题:
①函数f(x)是周期函数;
②函数f(x)在[0,2]是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点;
⑤函数y=f(x)-a的零点个数可能为0、1、2、3、4个.
其中正确命题的序号是
②⑤
②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南模拟)已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示.
x -1 0 2 4 5
y 1 2 0 2 1
(1)f(x)的极小值为
0
0

(2)若函数y=f(x)-a有4个零点,则实数a的取值范围为
[1,2)
[1,2)

查看答案和解析>>

同步练习册答案