精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,底面ABCD为矩形.已知AB=3,AD=2,PA=2, PD=,∠PAB=60°。  
(1)证明:AD⊥平面PAB;
(2)求二面角P-BD-A的大小。
(1)证明:在△PAD中,
由题设,PA=2,AD=2,PD=
可得PA2+AD2=PD2
于是AD⊥PA,
在矩形ABCD中,AD⊥AB,
又PA∩AB=A,
∴AD⊥平面PAB。

(2)解:过点P作PH⊥AB于H,过H作HE⊥BD于E,
连结PE,
∵AD⊥平面PAB,PH平面PAB,
∴AD⊥PH,
又AD∩AB=A,
∴PH⊥平面ABCD,
故HE为PE在平面ABCD内的射影,
由三垂线定理,可知BD⊥PE,
从而∠PEH是二面角P-BD-A的平面角,
由题设,可得
PH=PA·sin60°=,AH=PA·cos60°=1,
BH=AB-AH=2,BD=
HE=
于是在Rt△PHE中,tan∠PEH=
所以二面角P-BD-A的大小为arctan

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案