精英家教网 > 高中数学 > 题目详情
F1,F2为双曲线
x2
a2
-
y2
b2
=1
的左右焦点,过 F2作垂直于x轴的直线交双曲线于点P,若∠PF1F2=30°,求双曲线的渐近线方程.
在Rt△PF2F1中,设|PF1|=d1,|PF2|=d2,∵∠PF1F2=30°
d1=2d2
d1-d2=2a
∴d2=2a
∵|F2F1|=2c
∴tan30°=
2a
2c

a
c
=
3
3
,即
a2
a2+b2
=
1
3

(
b
a
)
2
=2

b
a
=
2

∴双曲线的渐近线方程为y=±
2
x
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2002•上海)F1,F2为双曲线
x2
a2
-
y2
b2
=1
的左右焦点,过 F2作垂直于x轴的直线交双曲线于点P,若∠PF1F2=30°,求双曲线的渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(A题) (奥赛班做)已知F1、F2为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的焦点,过F2作垂直于x轴的直线,它与双曲线的一个交点为P,且∠PF1F2=30°,则双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

F1,F2为双曲线
x2
a2
-
y2
b2
=1(a≠b)
的两焦点,P是右支上异于顶点的任意一点,O为原点,则△PF1F2的内切圆圆心一定在(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•温州二模)已知F1,F2为双曲线Ax2-By2=1的焦点,其顶点是线段F1F2的三等分点,则其渐近线的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A(0,
2
)
为圆心,1为半径为圆相切,又知C的一个焦点与A关于直线y=x对称.
(1)求双曲线C的方程;
(2)若Q是双曲线C上的任一点,F1、F2为双曲线C的左、右两个焦点,从F1引∠F1QF2的平分线的垂线,垂足为N,试求点N的轨迹方程.

查看答案和解析>>

同步练习册答案