精英家教网 > 高中数学 > 题目详情
若过两点P(-
3
,0),Q(0,1) 的直线与圆 (x-a)2+(y-2)2=1 相切,则a=______.
过P和Q的直线的斜率k=
1-0
0-(-
3
)
=
3
3
,所以直线方程为:y-1=
3
3
(x-0)即y=
3
3
x+1;
联立得:
y=
3
3
x+1
(x-a)2+(y-2)2=1
消去y得:
4
3
x2-(2a+
2
3
3
)x+a2=0,因为直线与圆相切,所以直线与圆有一个交点即一元二次方程的根的判别式等于0,得到(a+
2
3
3
)
2
-4×
4
3
a2=0,解得a=
3
±2
故答案为
3
±2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线、椭圆和双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这三条曲线的方程;
(2)已知动直线l过点P(3,0),交抛物线于A,B两点,是否存在垂直于x轴的直线l′被以AP为直径的圆截得的弦长为定值?若存在,求出L′的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若两条曲线的极坐标方程分别为ρ=1与ρ=2cos(θ+
π
3
)
,它们相交于A,B两点,求线段AB的长.
(2)过点P(-3,0)且倾斜角为30°直线和曲线
x=t+
1
t
y=t-
1
t
 (t为参数)
相交于A、B两点.求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

若过两点P(-
3
,0),Q(0,1) 的直线与圆 (x-a)2+(y-2)2=1 相切,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4:
坐标系与参数方程在平面直角坐标系x0y中,曲线C1为x=acosφ,y=sinφ(1<a<6,φ为参数).
在以0为原点,x轴正半轴为极轴的极坐标中,曲线C2的方程为ρ=6cosθ,射线ι为θ=α,ι与C1的交点为A,ι与C2除极点外的一个交点为B.当α=0时,|AB|=4.
(1)求C1,C2的直角坐标方程;
(2)若过点P(1,0)且斜率为
3
的直线m与曲线C1交于D、E两点,求|PD|与|PE|差的绝对值.

查看答案和解析>>

同步练习册答案