设函数f(x)=x2+b ln(x+1),其中b≠0.
(Ⅰ)当b>
时,判断函数f(x)在定义域上的单调性;
(Ⅱ)求函数f(x)的极值点;
(Ⅲ)证明对任意的正整数n,不等式ln
)都成立.
(I) 函数
的定义域为
.
,
令
,则
在
上递增,在
上递减,
.
当
时,
,
在
上恒成立.
![]()
即当
时,函数
在定义域
上单调递增。
(II)分以下几种情形讨论:
(1)由(I)知当
时函数
无极值点.
(2)当
时,
,
时,![]()
时,![]()
时,函数
在
上无极值点。
(3)当
时,解
得两个不同解
,
.
当
时,
,
,
![]()
此时
在
上有唯一的极小值点
.
当
时,![]()
在
都大于0 ,
在
上小于0 ,
此时
有一个极大值点
和一个极小值点
.
综上可知,
时,
在
上有唯一的极小值点
;
时,
有一个极大值点
和一个极小值点
;
时,函数
在
上无极值点。
(III) 当
时,![]()
令
则
在
上恒正,
在
上单调递增,当
时,恒有
.
即当
时,有![]()
,
对任意正整数
,取
得![]()
科目:高中数学 来源: 题型:
| n |
| p1+p2+…+pn |
| 1 |
| 2n+1 |
| an |
| 2n+1 |
| an |
| 2n+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
查看答案和解析>>
科目:高中数学 来源: 题型:
| 1 |
| 4 |
| B |
| 2 |
| ||
| 4 |
2
| ||
| 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2-x+n |
| x2+x+1 |
| n-1 |
| 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com