精英家教网 > 高中数学 > 题目详情

求证:+2<2+

答案:
解析:

  证明:法一:要证+2<2+成立,

  只需证(+2)2<(2+)2成立,

  即<11+4

  即,即6<7,

  显然6<7成立.

  ∴+2<2+成立.

  法二:要证+2<2+成立,

  只需证2<2-成立.

  只需证1

  ∵2>2,,∴2>2+>0.

  ∴成立.

  ∴+2<2+成立.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)2+1
bx+c-b
(a,b,c∈N)的图象按向量
e
=(-1,0)
平移后得到的图象关于原点对称,且f(2)=2,f(3)<3.
(1)求a,b,c的值;
(2)设0<|x|<1,0<|t|≤1.求证:|t+x|+|t-x|<|f(tx+1)|
(3)定义函数G(x)=f(x)-x+2.当n为正整数时,求证:G(4)×G(6)×G(8)×…×G(2n)>
2n+1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1
两焦点F1(-c,0),F2(c,0),点P为双曲线右支上除顶点外的任一点,∠PF1F2=α,∠PF2F1=β,求证:tan
α
2
•cot
β
2
=
c-a
c+a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aln(x+1)-
x
1+x
在[0,+∞)上单调递增,数列{an}满足a1=
1
3
a2=
7
9
an+2=
4
3
an+1-
1
3
an
(n∈N*).
(Ⅰ)求实数a的取值范围以及a取得最小值时f(x)的最小值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)求证:
1
a1+2
+
1
a2+2
+…+
1
an+2
<ln
3n+1-2
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0.
(1)求证:直线l恒过定点;
(2)求直线l被圆C截得的弦长的最小值及此时m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0,
(1)求证:直线l恒过定点;
(2)判断直线l被圆C截得的弦长何时最长,何时最短?并求截得的弦长最短时,求m的值以及最短长度.

查看答案和解析>>

同步练习册答案