精英家教网 > 高中数学 > 题目详情
已知x>-3,那么x+
1x+3
的最小值是
-1
-1
分析:由题意可得 x+3>0,再根据x+
1
x+3
=(x+3)+
1
x+3
-3,利用基本不等式求得式子的最小值.
解答:解:∵已知x>-3,∴x+3>0,再根据x+
1
x+3
=(x+3)+
1
x+3
-3≥2-3=-1,
当且仅当x+3=
1
x+3
,即x=-2时,x+
1
x+3
取得最小值为-1,
故答案为:-1.
点评:题主要考查基本不等式的应用,注意基本不等式的使用条件,以及等号成立的条件,式子的变形是解题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、已知集合A={x|x≥-1},B={x|x<3},那么集合A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天津模拟)已知函数f(x)的定义域为[-1,5],部分对应值如下表.
x -1 0 4 5
f(x) 1 2 2 1
f(x)的导函数y=f′(x)的图象如图所示:
下列关于f(x)的命题:
①函数f(x)是周期函数;
②函数f(x)在[0,2]是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点;
⑤函数y=f(x)-a的零点个数可能为0、1、2、3、4个.
其中正确命题的序号是
②⑤
②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数f(x),g(x),h(x),如果存在实数a,b,使得h(x)=af(x)+bg(x),那么称h(x)为f(x),g(x)的线性生成函数.
(1)给出如下两组函数,试判断h(x)是否分别为f(x),g(x)的线性生成函数,并说明理由.
第一组:数学公式
第二组:f(x)=x2-x,g(x)=x2+x+1,h(x)=x2-x+1.
(2)已知f(x)=log2x,g(x)=log0.5x的线性生成函数为h(x),其中a=2,b=1.若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求实数t的取值范围;
(3)已知数学公式的线性生成函数h(x),其中a>0,b>0.若h(x)≥b对a∈[1,2]恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省苏州中学高三(上)调研数学试卷(解析版) 题型:解答题

对于函数f(x),g(x),h(x),如果存在实数a,b,使得h(x)=af(x)+bg(x),那么称h(x)为f(x),g(x)的线性生成函数.
(1)给出如下两组函数,试判断h(x)是否分别为f(x),g(x)的线性生成函数,并说明理由.
第一组:
第二组:f(x)=x2-x,g(x)=x2+x+1,h(x)=x2-x+1.
(2)已知f(x)=log2x,g(x)=log0.5x的线性生成函数为h(x),其中a=2,b=1.若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求实数t的取值范围;
(3)已知的线性生成函数h(x),其中a>0,b>0.若h(x)≥b对a∈[1,2]恒成立,求实数b的取值范围.

查看答案和解析>>

同步练习册答案